Machine learning approach for spatial modeling of ridesourcing demand
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jtrangeo.2022.103310
Download full text from publisher
References listed on IDEAS
- Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
- Shao, Qifan & Zhang, Wenjia & Cao, Xinyu & Yang, Jiawen & Yin, Jie, 2020. "Threshold and moderating effects of land use on metro ridership in Shenzhen: Implications for TOD planning," Journal of Transport Geography, Elsevier, vol. 89(C).
- Kong, Hui & Zhang, Xiaohu & Zhao, Jinhua, 2020. "How does ridesourcing substitute for public transit? A geospatial perspective in Chengdu, China," Journal of Transport Geography, Elsevier, vol. 86(C).
- Xu, Yiming & Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2021. "Identifying key factors associated with ridesplitting adoption rate and modeling their nonlinear relationships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 170-188.
- Jinkyung Choi & Yong Lee & Taewan Kim & Keemin Sohn, 2012. "An analysis of Metro ridership at the station-to-station level in Seoul," Transportation, Springer, vol. 39(3), pages 705-722, May.
- Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2020. "Using machine learning for direct demand modeling of ridesourcing services in Chicago," Journal of Transport Geography, Elsevier, vol. 83(C).
- Clewlow, Regina R. & Mishra, Gouri S., 2017. "Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States," Institute of Transportation Studies, Working Paper Series qt82w2z91j, Institute of Transportation Studies, UC Davis.
- Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
- Ding, Chuan & Cao, Xinyu & Liu, Chao, 2019. "How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds," Journal of Transport Geography, Elsevier, vol. 77(C), pages 70-78.
- Ding, Chuan & Cao, Xinyu & Yu, Bin & Ju, Yang, 2021. "Non-linear associations between zonal built environment attributes and transit commuting mode choice accounting for spatial heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 22-35.
- Zhang, Shanqi & Yang, Yu & Zhen, Feng & Lobsang, Tashi & Li, Zhixuan, 2021. "Understanding the travel behaviors and activity patterns of the vulnerable population using smart card data: An activity space-based approach," Journal of Transport Geography, Elsevier, vol. 90(C).
- Ding, Chuan & Cao, Xinyu (Jason) & Næss, Petter, 2018. "Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 107-117.
- Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
- Aghaabbasi, Mahdi & Shekari, Zohreh Asadi & Shah, Muhammad Zaly & Olakunle, Oloruntobi & Armaghani, Danial Jahed & Moeinaddini, Mehdi, 2020. "Predicting the use frequency of ride-sourcing by off-campus university students through random forest and Bayesian network techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 262-281.
- Alejandro Henao & Wesley E. Marshall, 2019. "The impact of ride-hailing on vehicle miles traveled," Transportation, Springer, vol. 46(6), pages 2173-2194, December.
- Peter Cohen & Robert Hahn & Jonathan Hall & Steven Levitt & Robert Metcalfe, 2016. "Using Big Data to Estimate Consumer Surplus: The Case of Uber," NBER Working Papers 22627, National Bureau of Economic Research, Inc.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Xiaojian & Zhou, Zhengze & Xu, Yiming & Zhao, Xilei, 2024. "Analyzing spatial heterogeneity of ridesourcing usage determinants using explainable machine learning," Journal of Transport Geography, Elsevier, vol. 114(C).
- Yang Yang & Samitha Samaranayake & Timur Dogan, 2023. "Assessing impacts of the built environment on mobility: A joint choice model of travel mode and duration," Environment and Planning B, , vol. 50(9), pages 2359-2375, November.
- Yuan Liang & Bingjie Yu & Xiaojian Zhang & Yi Lu & Linchuan Yang, 2022. "The Short-term Impact of Congestion Taxes on Ridesourcing Demand and Traffic Congestion: Evidence from Chicago," Papers 2207.01793, arXiv.org, revised Feb 2023.
- Liang, Yuan & Yu, Bingjie & Zhang, Xiaojian & Lu, Yi & Yang, Linchuan, 2023. "The short-term impact of congestion taxes on ridesourcing demand and traffic congestion: Evidence from Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
- Xu, Ningzhe & Nie, Qifan & Liu, Jun & Jones, Steven, 2024. "Linking short- and long-term impacts of the COVID-19 pandemic on travel behavior and travel preferences in Alabama: A machine learning-supported path analysis," Transport Policy, Elsevier, vol. 151(C), pages 46-62.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Du, Mingyang & Cheng, Lin & Li, Xuefeng & Liu, Qiyang & Yang, Jingzong, 2022. "Spatial variation of ridesplitting adoption rate in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 13-37.
- Ding, Chuan & Cao, Xinyu & Yu, Bin & Ju, Yang, 2021. "Non-linear associations between zonal built environment attributes and transit commuting mode choice accounting for spatial heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 22-35.
- Du, Qiang & Zhou, Yuqing & Huang, Youdan & Wang, Yalei & Bai, Libiao, 2022. "Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership," Journal of Transport Geography, Elsevier, vol. 102(C).
- Yang, Hongtai & Zheng, Rong & Li, Xuan & Huo, Jinghai & Yang, Linchuan & Zhu, Tong, 2022. "Nonlinear and threshold effects of the built environment on e-scooter sharing ridership," Journal of Transport Geography, Elsevier, vol. 104(C).
- Li, Wu & Zhao, Shengchuan & Ma, Jingwen & Nielsen, Otto Anker & Jiang, Yu, 2023. "Book-ahead ride-hailing trip and its determinants: Findings from large-scale trip records in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
- Shao, Qifan & Zhang, Wenjia & Cao, Xinyu (Jason) & Yang, Jiawen, 2023. "Built environment interventions for emission mitigation: A machine learning analysis of travel-related CO2 in a developing city," Journal of Transport Geography, Elsevier, vol. 110(C).
- Wang, Sicheng & Du, Rui & Lee, Annie S., 2024. "Ridesourcing regulation and traffic speeds: A New York case," Journal of Transport Geography, Elsevier, vol. 116(C).
- Gao, Kun & Yang, Ying & Gil, Jorge & Qu, Xiaobo, 2023. "Data-driven interpretation on interactive and nonlinear effects of the correlated built environment on shared mobility," Journal of Transport Geography, Elsevier, vol. 110(C).
- Xu, Yiming & Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2021. "Identifying key factors associated with ridesplitting adoption rate and modeling their nonlinear relationships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 170-188.
- Soria, Jason & Stathopoulos, Amanda, 2021.
"Investigating socio-spatial differences between solo ridehailing and pooled rides in diverse communities,"
Journal of Transport Geography, Elsevier, vol. 95(C).
- Jason Soria & Amanda Stathopoulos, 2021. "Investigating Socio-spatial Differences between Solo Ridehailing and Pooled Rides in Diverse Communities," Papers 2105.03512, arXiv.org.
- Zhang, Zhaolin & Zhai, Guocong & Xie, Kun & Xiao, Feng, 2022. "Exploring the nonlinear effects of ridesharing on public transit usage: A case study of San Diego," Journal of Transport Geography, Elsevier, vol. 104(C).
- Li, Shengxiao(Alex) & Zhai, Wei & Jiao, Junfeng & Wang, Chao (Kenneth), 2022. "Who loses and who wins in the ride-hailing era? A case study of Austin, Texas," Transport Policy, Elsevier, vol. 120(C), pages 130-138.
- Yang, Jiawen & Cao, Jason & Zhou, Yufei, 2021. "Elaborating non-linear associations and synergies of subway access and land uses with urban vitality in Shenzhen," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 74-88.
- Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2020. "Using machine learning for direct demand modeling of ridesourcing services in Chicago," Journal of Transport Geography, Elsevier, vol. 83(C).
- Morteza Taiebat & Elham Amini & Ming Xu, 2022. "Sharing Behavior in Ride-hailing Trips: A Machine Learning Inference Approach," Papers 2201.12696, arXiv.org.
- Liang, Yuan & Yu, Bingjie & Zhang, Xiaojian & Lu, Yi & Yang, Linchuan, 2023. "The short-term impact of congestion taxes on ridesourcing demand and traffic congestion: Evidence from Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
- Aguilera-García, Álvaro & Gomez, Juan & Velázquez, Guillermo & Vassallo, Jose Manuel, 2022. "Ridesourcing vs. traditional taxi services: Understanding users’ choices and preferences in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 161-178.
- Hu, Songhua & Xiong, Chenfeng & Chen, Peng & Schonfeld, Paul, 2023. "Examining nonlinearity in population inflow estimation using big data: An empirical comparison of explainable machine learning models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
- Brown, Anne, 2022. "Not all fees are created equal: Equity implications of ride-hail fee structures and revenues," Transport Policy, Elsevier, vol. 125(C), pages 1-10.
- He, Zhengbing, 2021. "Portraying ride-hailing mobility using multi-day trip order data: A case study of Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 152-169.
More about this item
Keywords
Ridesourcing demand; Spatial heterogeneity; Clustering; Machine learning; Ensemble model; Human-in-the-loop AI;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:100:y:2022:i:c:s0966692322000333. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.