An Advanced Machine Learning Approach to Predicting Pedestrian Fatality Caused by Road Crashes: A Step toward Sustainable Pedestrian Safety
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
- Ho-Chul Park & Yang-Jun Joo & Seung-Young Kho & Dong-Kyu Kim & Byung-Jung Park, 2019. "Injury Severity of Bus–Pedestrian Crashes in South Korea Considering the Effects of Regional and Company Factors," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
- Dingqi Yan & Qi Zhou & Jianzhou Wang & Na Zhang, 2017. "Bayesian regularisation neural network based on artificial intelligence optimisation," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2266-2287, April.
- Manze Guo & Zhenzhou Yuan & Bruce Janson & Yongxin Peng & Yang Yang & Wencheng Wang, 2021. "Older Pedestrian Traffic Crashes Severity Analysis Based on an Emerging Machine Learning XGBoost," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
- Mujahid Ali & Dimas Bayu Endrayana Dharmowijoyo & Afonso R. G. de Azevedo & Roman Fediuk & Habil Ahmad & Bashir Salah, 2021. "Time-Use and Spatio-Temporal Variables Influence on Physical Activity Intensity, Physical and Social Health of Travelers," Sustainability, MDPI, vol. 13(21), pages 1-24, November.
- Seunghoon Park & Dongwon Ko, 2020. "Investigating the Factors Influencing Pedestrian–Vehicle Crashes by Age Group in Seoul, South Korea: A Hierarchical Model," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
- Zhu-Ping Zhou & Ying-Shun Liu & Wei Wang & Yong Zhang, 2013. "Multinomial Logit Model of Pedestrian Crossing Behaviors at Signalized Intersections," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-8, December.
- Aghaabbasi, Mahdi & Shekari, Zohreh Asadi & Shah, Muhammad Zaly & Olakunle, Oloruntobi & Armaghani, Danial Jahed & Moeinaddini, Mehdi, 2020. "Predicting the use frequency of ride-sourcing by off-campus university students through random forest and Bayesian network techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 262-281.
- Shakil Rifaat & Richard Tay & Alexandre de Barros, 2012. "Urban Street Pattern and Pedestrian Traffic Safety," Journal of Urban Design, Taylor & Francis Journals, vol. 17(3), pages 337-352.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Te Ma & Mahdi Aghaabbasi & Mujahid Ali & Rosilawati Zainol & Amin Jan & Abdeliazim Mustafa Mohamed & Abdullah Mohamed, 2022. "Nonlinear Relationships between Vehicle Ownership and Household Travel Characteristics and Built Environment Attributes in the US Using the XGBT Algorithm," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
- Panyu Tang & Mahdi Aghaabbasi & Mujahid Ali & Amin Jan & Abdeliazim Mustafa Mohamed & Abdullah Mohamed, 2022. "How Sustainable Is People’s Travel to Reach Public Transit Stations to Go to Work? A Machine Learning Approach to Reveal Complex Relationships," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
- Lei Yang & Mahdi Aghaabbasi & Mujahid Ali & Amin Jan & Belgacem Bouallegue & Muhammad Faisal Javed & Nermin M. Salem, 2022. "Comparative Analysis of the Optimized KNN, SVM, and Ensemble DT Models Using Bayesian Optimization for Predicting Pedestrian Fatalities: An Advance towards Realizing the Sustainable Safety of Pedestri," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
- Katarzyna Sosik-Filipiak & Oleksandra Osypchuk, 2023. "Identification of Solutions for Vulnerable Road Users Safety in Urban Transport Systems: Grounded Theory Research," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lei Yang & Mahdi Aghaabbasi & Mujahid Ali & Amin Jan & Belgacem Bouallegue & Muhammad Faisal Javed & Nermin M. Salem, 2022. "Comparative Analysis of the Optimized KNN, SVM, and Ensemble DT Models Using Bayesian Optimization for Predicting Pedestrian Fatalities: An Advance towards Realizing the Sustainable Safety of Pedestri," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
- Panyu Tang & Mahdi Aghaabbasi & Mujahid Ali & Amin Jan & Abdeliazim Mustafa Mohamed & Abdullah Mohamed, 2022. "How Sustainable Is People’s Travel to Reach Public Transit Stations to Go to Work? A Machine Learning Approach to Reveal Complex Relationships," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
- Shen Liu & Hongyan Liu, 2021. "Tagging Items Automatically Based on Both Content Information and Browsing Behaviors," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 882-897, July.
- Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022.
"Fast and accurate variational inference for models with many latent variables,"
Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
- Rub'en Loaiza-Maya & Michael Stanley Smith & David J. Nott & Peter J. Danaher, 2020. "Fast and Accurate Variational Inference for Models with Many Latent Variables," Papers 2005.07430, arXiv.org, revised Apr 2021.
- Xing Qin & Shuangge Ma & Mengyun Wu, 2023. "Two‐level Bayesian interaction analysis for survival data incorporating pathway information," Biometrics, The International Biometric Society, vol. 79(3), pages 1761-1774, September.
- Youngseon Lee & Seongil Jo & Jaeyong Lee, 2022. "A variational inference for the Lévy adaptive regression with multiple kernels," Computational Statistics, Springer, vol. 37(5), pages 2493-2515, November.
- Liu, Jie & Ye, Zifeng & Chen, Kun & Zhang, Panpan, 2024. "Variational Bayesian inference for bipartite mixed-membership stochastic block model with applications to collaborative filtering," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
- Nathaniel Tomasetti & Catherine Forbes & Anastasios Panagiotelis, 2019.
"Updating Variational Bayes: Fast Sequential Posterior Inference,"
Monash Econometrics and Business Statistics Working Papers
13/19, Monash University, Department of Econometrics and Business Statistics.
- Nathaniel Tomasetti & Catherine Forbes & Anastasios Panagiotelis, 2020. "Updating Variational Bayes: Fast Sequential Posterior Inference," Monash Econometrics and Business Statistics Working Papers 27/20, Monash University, Department of Econometrics and Business Statistics.
- Xiangning Dong & Xuhao Zhu & Minghua Hu & Jie Bao, 2023. "A Methodology for Predicting Ground Delay Program Incidence through Machine Learning," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- Gustavo García-Melero & Rubén Sainz-González & Pablo Coto-Millán & Alejandra Valencia-Vásquez, 2021. "Sustainable Mobility Policy Analysis Using Hybrid Choice Models: Is It the Right Choice?," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
- Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Zohreh Asadi-Shekari & Ismaïl Saadi & Mario Cools, 2022. "Applying Machine Learning to Explore Feelings about Sharing the Road with Autonomous Vehicles as a Bicyclist or as a Pedestrian," Sustainability, MDPI, vol. 14(3), pages 1-10, February.
- Ho, Paul, 2023.
"Global robust Bayesian analysis in large models,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
- Paul Ho, 2019. "Global Robust Bayesian Analysis in Large Models," 2019 Meeting Papers 390, Society for Economic Dynamics.
- Paul Ho, 2020. "Global Robust Bayesian Analysis in Large Models," Working Paper 20-07, Federal Reserve Bank of Richmond.
- Liang, Xinbin & Liu, Zhuoxuan & Wang, Jie & Jin, Xinqiao & Du, Zhimin, 2023. "Uncertainty quantification-based robust deep learning for building energy systems considering distribution shift problem," Applied Energy, Elsevier, vol. 337(C).
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Seokhyun Chung & Raed Al Kontar & Zhenke Wu, 2022. "Weakly Supervised Multi-output Regression via Correlated Gaussian Processes," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 115-137, October.
- Gary Koop & Dimitris Korobilis, 2023.
"Bayesian Dynamic Variable Selection In High Dimensions,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
- Gary Koop & Dimitris Korobilis, 2018. "Bayesian dynamic variable selection in high dimensions," Papers 1809.03031, arXiv.org, revised May 2020.
- Korobilis, Dimitris & Koop, Gary, 2020. "Bayesian dynamic variable selection in high dimensions," MPRA Paper 100164, University Library of Munich, Germany.
- Gary Koop & Dimitris Korobilis, 2020. "Bayesian dynamic variable selection in high dimensions," Working Papers 2020_11, Business School - Economics, University of Glasgow.
- Ziqi Zhang & Xinye Zhao & Mehak Bindra & Peng Qiu & Xiuwei Zhang, 2024. "scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Dimitris Korobilis & Davide Pettenuzzo, 2020.
"Machine Learning Econometrics: Bayesian algorithms and methods,"
Working Papers
2020_09, Business School - Economics, University of Glasgow.
- Korobilis, Dimitris & Pettenuzzo, Davide, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," MPRA Paper 100165, University Library of Munich, Germany.
- Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Papers 2004.11486, arXiv.org.
- Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Working Papers 130, Brandeis University, Department of Economics and International Business School.
More about this item
Keywords
pedestrian fatality; road accident; Bayesian neural network; Bayesian theorem; sustainable road network development; machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2436-:d:754076. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.