IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v183y2024ics0965856424000958.html
   My bibliography  Save this article

Spatio-temporal analysis on online designated driving based on empirical data

Author

Listed:
  • HUO, Zhengqi
  • YANG, Xiaobao
  • LIU, Xiaobing
  • YAN, Xuedong

Abstract

In recent years, mobility-on-demand services have experienced rapid growth and become an integral part of the urban transport system. As one of the prevalent mobility-on-demand services, online designated driving allows car-owners booking professional drivers via mobile apps to deliver private cars (frequently with the car-owners inside) to a designated location for a fee. Online designated driving can play a crucial role in promoting road safety by providing a responsible alternative for those who cannot drive themselves due to drinking or fatigue, but there is still a lack of empirical study on its basic travel patterns. Using massive trip records of online designated driving, this study investigates the collective and individual spatio-temporal travel patterns, and reveals the spatio-temporal impact mechanism of various land-use types on online designated driving demand. Take Beijing as a case study, the results show that unlike ride-hailing trips that primarily occur during the daytime, 93.07 % of online designated driving trips occurs between 18:00 and 7:00 the next day, with the longest peak observed on Friday nights. Meanwhile, the average distance of online designated driving trips is approximately twice as long as that of ride-hailing trips (16.58 km vs. 8.48 km). The collective travel patterns of online designated driving exhibit a shrinking trend in the form of “surface-line-point” over time. Regarding individual patterns, we rigorously demonstrate that 81.55 % of high-frequency users exhibit a “fixed-destination” phenomenon, indicating a clear centripetal tendency. Furthermore, online designated driving is primarily associated with limited land-use types, revealing that it may serve specific target audiences, like travelers returning from entertainment and catering activities after consuming alcohol, or those in need of transportation for business and automotive services. These findings can contribute to refining operational practices and enhancing regulatory measures for online designated driving.

Suggested Citation

  • HUO, Zhengqi & YANG, Xiaobao & LIU, Xiaobing & YAN, Xuedong, 2024. "Spatio-temporal analysis on online designated driving based on empirical data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:transa:v:183:y:2024:i:c:s0965856424000958
    DOI: 10.1016/j.tra.2024.104047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424000958
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Hongtai & Luo, Peng & Li, Chaojing & Zhai, Guocong & Yeh, Anthony G.O., 2023. "Nonlinear effects of fare discounts and built environment on ridesplitting adoption rates," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    2. Sanaullah, Irum & Alsaleh, Nael & Djavadian, Shadi & Farooq, Bilal, 2021. "Spatio-temporal analysis of on-demand transit: A case study of Belleville, Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 284-301.
    3. Zhang, Bin & Chen, Shuyan & Ma, Yongfeng & Li, Tiezhu & Tang, Kun, 2020. "Analysis on spatiotemporal urban mobility based on online car-hailing data," Journal of Transport Geography, Elsevier, vol. 82(C).
    4. Guanwei Zhao & Zhitao Li & Yuzhen Shang & Muzhuang Yang, 2022. "How Does the Urban Built Environment Affect Online Car-Hailing Ridership Intensity among Different Scales?," IJERPH, MDPI, vol. 19(9), pages 1-25, April.
    5. Aghaabbasi, Mahdi & Shekari, Zohreh Asadi & Shah, Muhammad Zaly & Olakunle, Oloruntobi & Armaghani, Danial Jahed & Moeinaddini, Mehdi, 2020. "Predicting the use frequency of ride-sourcing by off-campus university students through random forest and Bayesian network techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 262-281.
    6. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Liu, Qiyang & Yang, Jingzong, 2022. "Spatial variation of ridesplitting adoption rate in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 13-37.
    7. Pan, Yingjiu & Chen, Shuyan & Niu, Shifeng & Ma, Yongfeng & Tang, Kun, 2020. "Investigating the impacts of built environment on traffic states incorporating spatial heterogeneity," Journal of Transport Geography, Elsevier, vol. 83(C).
    8. Rong-Chang Jou & Li-Wun Syu, 2021. "Drunk Drivers’ Willingness to Use and to Pay for Designated Drivers," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
    9. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    10. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    11. Abouelela, Mohamed & Chaniotakis, Emmanouil & Antoniou, Constantinos, 2023. "Understanding the landscape of shared-e-scooters in North America; Spatiotemporal analysis and policy insights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    12. He, Zhengbing, 2021. "Portraying ride-hailing mobility using multi-day trip order data: A case study of Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 152-169.
    13. Shaopeng Zhong & Daniel (Jian) Sun, 2022. "Logic-Driven Traffic Big Data Analytics: An Introduction," Springer Books, in: Logic-Driven Traffic Big Data Analytics, chapter 0, pages 1-32, Springer.
    14. Chen, Chao & Feng, Tao & Ding, Chuan & Yu, Bin & Yao, Baozhen, 2021. "Examining the spatial-temporal relationship between urban built environment and taxi ridership: Results of a semi-parametric GWPR model," Journal of Transport Geography, Elsevier, vol. 96(C).
    15. Chengbin Peng & Xiaogang Jin & Ka-Chun Wong & Meixia Shi & Pietro Liò, 2012. "Collective Human Mobility Pattern from Taxi Trips in Urban Area," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-8, April.
    16. Zhang, Xiaohu & Xu, Yang & Tu, Wei & Ratti, Carlo, 2018. "Do different datasets tell the same story about urban mobility — A comparative study of public transit and taxi usage," Journal of Transport Geography, Elsevier, vol. 70(C), pages 78-90.
    17. Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen Xie & Dexin Yu & Ciyun Lin & Xiaoyu Zheng & Bo Peng, 2022. "Exploring the Spatiotemporal Impacts of the Built Environment on Taxi Ridership Using Multisource Data," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
    2. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Liu, Qiyang & Yang, Jingzong, 2022. "Spatial variation of ridesplitting adoption rate in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 13-37.
    3. Zhenbao Wang & Xin Gong & Yuchen Zhang & Shuyue Liu & Ning Chen, 2023. "Multi-Scale Geographically Weighted Elasticity Regression Model to Explore the Elastic Effects of the Built Environment on Ride-Hailing Ridership," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    4. Liao, Yuan, 2021. "Ride-sourcing compared to its public-transit alternative using big trip data," Journal of Transport Geography, Elsevier, vol. 95(C).
    5. He, Mingwei & He, Chengfeng & Shi, Zhuangbin & He, Min, 2022. "Spatiotemporal heterogeneous effects of socio-demographic and built environment on private car usage: An empirical study of Kunming, China," Journal of Transport Geography, Elsevier, vol. 101(C).
    6. Kirtonia, Sajeeb & Sun, Yanshuo, 2022. "Evaluating rail transit's comparative advantages in travel cost and time over taxi with open data in two U.S. cities," Transport Policy, Elsevier, vol. 115(C), pages 75-87.
    7. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    8. Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
    9. Peng, Yisheng & Liu, Jiahui & Li, Fangyou & Cui, Jianqiang & Lu, Yi & Yang, Linchuan, 2024. "Resilience of ride-hailing services in response to air pollution and its association with built-environment and socioeconomic characteristics," Journal of Transport Geography, Elsevier, vol. 120(C).
    10. Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2022. "Revealing mobility pattern of taxi movements with its travel trajectory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    11. Zhitao Li & Xiaolu Wang & Fan Gao & Jinjun Tang & Hanmeng Xu, 2024. "Analysis of mobility patterns for urban taxi ridership: the role of the built environment," Transportation, Springer, vol. 51(4), pages 1409-1431, August.
    12. He, Zhengbing, 2021. "Portraying ride-hailing mobility using multi-day trip order data: A case study of Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 152-169.
    13. Wang, Sicheng & Du, Rui & Lee, Annie S., 2024. "Ridesourcing regulation and traffic speeds: A New York case," Journal of Transport Geography, Elsevier, vol. 116(C).
    14. Yang, Xiong & Zhuge, Chengxiang & Shao, Chunfu & Huang, Yuantan & Hayse Chiwing G. Tang, Justin & Sun, Mingdong & Wang, Pinxi & Wang, Shiqi, 2022. "Characterizing mobility patterns of private electric vehicle users with trajectory data," Applied Energy, Elsevier, vol. 321(C).
    15. Jing Yang & Disheng Yi & Jingjing Liu & Yusi Liu & Jing Zhang, 2019. "Spatiotemporal Change Characteristics of Nodes’ Heterogeneity in the Directed and Weighted Spatial Interaction Networks: Case Study within the Sixth Ring Road of Beijing, China," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    16. Chen, Chao & Feng, Tao & Ding, Chuan & Yu, Bin & Yao, Baozhen, 2021. "Examining the spatial-temporal relationship between urban built environment and taxi ridership: Results of a semi-parametric GWPR model," Journal of Transport Geography, Elsevier, vol. 96(C).
    17. Chen, Yu & Lu, Yuqi & Jin, Cheng, 2024. "Spatiotemporal differentiation calendar for car and truck flow on expressways: A case study of Jiangsu, China," Journal of Transport Geography, Elsevier, vol. 116(C).
    18. Zhang, Bin & Chen, Shuyan & Ma, Yongfeng & Li, Tiezhu & Tang, Kun, 2020. "Analysis on spatiotemporal urban mobility based on online car-hailing data," Journal of Transport Geography, Elsevier, vol. 82(C).
    19. Zhang, Xiaojian & Zhao, Xilei, 2022. "Machine learning approach for spatial modeling of ridesourcing demand," Journal of Transport Geography, Elsevier, vol. 100(C).
    20. Du, Qiang & Zhou, Yuqing & Huang, Youdan & Wang, Yalei & Bai, Libiao, 2022. "Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership," Journal of Transport Geography, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:183:y:2024:i:c:s0965856424000958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.