IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6443-d823502.html
   My bibliography  Save this article

Freshwater Aquaculture Development in EU and Latin-America: Insight on Production Trends and Resource Endowments

Author

Listed:
  • Gergő Gyalog

    (Research Centre for Aquaculture and Fisheries, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 5540 Szarvas, Hungary)

  • Julieth Paola Cubillos Tovar

    (Doctoral School of Economic and Regional Sciences, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

  • Emese Békefi

    (Research Centre for Aquaculture and Fisheries, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 5540 Szarvas, Hungary)

Abstract

This paper provides a comparative overview of decadal changes in aquaculture production in the European Union (EU-27) and Latin America and the Caribbean (LAC). Contrary to other regions of the world, freshwater fish farming in these two territories is a marginal sub-segment of the aquaculture sector. Using an indicator-based approach, we track development tendencies in freshwater aquaculture, focusing on the main established and emerging species, diversification, and shifts in the mean trophic level of farmed animals. Geographical patterns in production trends are revealed in both regions. The study attempts to explain between-region and between-country differences in aquaculture growth by analyzing freshwater resource endowments at region-level and country-level, using total renewable water resources (TRWR) as an indicator of water-abundancy. Thermal optimum of main produced species is matched against climate conditions prevailing in main producer countries to provide further understanding of spatial heterogeneity in growth rates of aquaculture sector.

Suggested Citation

  • Gergő Gyalog & Julieth Paola Cubillos Tovar & Emese Békefi, 2022. "Freshwater Aquaculture Development in EU and Latin-America: Insight on Production Trends and Resource Endowments," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6443-:d:823502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6443/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6443/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piotr Eljasik & Remigiusz Panicz & Małgorzata Sobczak & Jacek Sadowski, 2022. "Key Performance Indicators of Common Carp ( Cyprinus carpio L.) Wintering in a Pond and RAS under Different Feeding Schemes," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    2. Hall, S.J. & Delaporte, A. & Phillips, M.J. & Beveridge, M. & O'Keefe, M. & The WorldFish Center, 2011. "Blue frontiers: managing the environmental costs of aquaculture," Monographs, The WorldFish Center, number 39461, April.
    3. Jessica A. Gephart & Patrik J. G. Henriksson & Robert W. R. Parker & Alon Shepon & Kelvin D. Gorospe & Kristina Bergman & Gidon Eshel & Christopher D. Golden & Benjamin S. Halpern & Sara Hornborg & Ma, 2021. "Environmental performance of blue foods," Nature, Nature, vol. 597(7876), pages 360-365, September.
    4. Mahlknecht, Jürgen & González-Bravo, Ramón & Loge, Frank J., 2020. "Water-energy-food security: A Nexus perspective of the current situation in Latin America and the Caribbean," Energy, Elsevier, vol. 194(C).
    5. Sterenn Lucas & Louis-Georges Soler & Xavier Irz & Didier D. Gascuel & Joël Aubin & Thomas Cloâtre, 2021. "The environmental impact of the consumption of fishery and aquaculture products in France," Post-Print hal-03192691, HAL.
    6. Gergő Gyalog & Judit Oláh & Emese Békefi & Mónika Lukácsik & József Popp, 2017. "Constraining Factors in Hungarian Carp Farming: An Econometric Perspective," Sustainability, MDPI, vol. 9(11), pages 1-13, November.
    7. József Popp & László Váradi & Emese Békefi & András Péteri & Gergő Gyalog & Zoltán Lakner & Judit Oláh, 2018. "Evolution of Integrated Open Aquaculture Systems in Hungary: Results from a Case Study," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    8. Magdalena Raftowicz & Bertrand le Gallic & Magdalena Kalisiak-Mędelska & Krzysztof Rutkiewicz & Emilia Konopska-Struś, 2021. "Effectiveness of Public Aid for Inland Aquaculture in Poland—The Relevance of Traditional Performance Ratios," Sustainability, MDPI, vol. 13(9), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Schoor & Ana Patricia Arenas-Salazar & Irineo Torres-Pacheco & Ramón Gerardo Guevara-González & Enrique Rico-García, 2023. "A Review of Sustainable Pillars and their Fulfillment in Agriculture, Aquaculture, and Aquaponic Production," Sustainability, MDPI, vol. 15(9), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Taishan & Zhang, Junlong & You, Li & Zeng, Xueting & Ma, Yuan & Li, Yongping & Huang, Guohe, 2023. "Optimal design of two-dimensional water trading considering hybrid “three waters”-government participation for an agricultural watershed," Agricultural Water Management, Elsevier, vol. 288(C).
    2. Koen Deconinck & Marion Jansen & Carla Barisone, 2023. "Fast and furious: the rise of environmental impact reporting in food systems," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(4), pages 1310-1337.
    3. Malak Anshassi & Timothy G. Townsend, 2023. "The hidden economic and environmental costs of eliminating kerb-side recycling," Nature Sustainability, Nature, vol. 6(8), pages 919-928, August.
    4. Shazia Kousar & Farhan Ahmed & Amber Pervaiz & Štefan Bojnec, 2021. "Food Insecurity, Population Growth, Urbanization and Water Availability: The Role of Government Stability," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    5. César Salazar & Roberto Cárdenas-Retamal & Marcela Jaime, 2023. "Environmental efficiency in the salmon industry—an exploratory analysis around the 2007 ISA virus outbreak and subsequent regulations in Chile," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8107-8135, August.
    6. Arianna Martini & Leonardo Aguiari & Fabrizio Capoccioni & Marco Martinoli & Riccardo Napolitano & Giacomo Pirlo & Nicolò Tonachella & Domitilla Pulcini, 2023. "Is Manila Clam Farming Environmentally Sustainable? A Life Cycle Assessment (LCA) Approach Applied to an Italian Ruditapes philippinarum Hatchery," Sustainability, MDPI, vol. 15(4), pages 1-9, February.
    7. Naylor, Rosamond & Fang, Safari & Fanzo, Jessica, 2023. "A global view of aquaculture policy," Food Policy, Elsevier, vol. 116(C).
    8. Basak Topcu & Goretty M. Dias & Sadaf Mollaei, 2022. "Ten-Year Changes in Global Warming Potential of Dietary Patterns Based on Food Consumption in Ontario, Canada," Sustainability, MDPI, vol. 14(10), pages 1-20, May.
    9. Claude E. Boyd & Aaron A. McNevin & Robert P. Davis, 2022. "The contribution of fisheries and aquaculture to the global protein supply," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 805-827, June.
    10. Nguyen Van Huong & Tran Huu Cuong & Tran Thi Nang Thu & Philippe Lebailly, 2018. "Efficiency of Different Integrated Agriculture Aquaculture Systems in the Red River Delta of Vietnam," Sustainability, MDPI, vol. 10(2), pages 1-13, February.
    11. Gaspard Philis & Friederike Ziegler & Lars Christian Gansel & Mona Dverdal Jansen & Erik Olav Gracey & Anne Stene, 2019. "Comparing Life Cycle Assessment (LCA) of Salmonid Aquaculture Production Systems: Status and Perspectives," Sustainability, MDPI, vol. 11(9), pages 1-27, April.
    12. Zeyang Bian & Dan Liu, 2021. "A Comprehensive Review on Types, Methods and Different Regions Related to Water–Energy–Food Nexus," IJERPH, MDPI, vol. 18(16), pages 1-24, August.
    13. Stefanie Colombo & Juan A. Manríquez-Hernández & Janet Music & Sylvain Charlebois, 2024. "Canadians’ Opinions and Preferences regarding Seafood, and the Factors That Contribute to Their Consumption and Purchasing Habits," Sustainability, MDPI, vol. 16(3), pages 1-12, January.
    14. Dumas, Patrice & Wirsenius, Stefan & Searchinger, Tim & Andrieu, Nadine & Vogt-Schilb, Adrien, 2022. "Options to achieve net-zero emissions from agriculture and land use changes in Latin America and the Caribbean," IDB Publications (Working Papers) 12385, Inter-American Development Bank.
    15. Gorjian, Shiva & Jalili Jamshidian, Farid & Gorjian, Alireza & Faridi, Hamideh & Vafaei, Mohammad & Zhang, Fangxin & Liu, Wen & Elia Campana, Pietro, 2023. "Technological advancements and research prospects of innovative concentrating agrivoltaics," Applied Energy, Elsevier, vol. 337(C).
    16. Mayerlin Sandoval Herazo & Graciela Nani & Florentina Zurita & Carlos Nakase & Sergio Zamora & Luis Carlos Sandoval Herazo & Erick Arturo Betanzo-Torres, 2022. "A Review of the Presence of SARS-CoV-2 in Wastewater: Transmission Risks in Mexico," IJERPH, MDPI, vol. 19(14), pages 1-22, July.
    17. Taryn M. Garlock & Frank Asche & James L. Anderson & Håkan Eggert & Thomas M. Anderson & Bin Che & Carlos A. Chávez & Jingjie Chu & Nnaemeka Chukwuone & Madan M. Dey & Kevin Fitzsimmons & Jimely Flore, 2024. "Environmental, economic, and social sustainability in aquaculture: the aquaculture performance indicators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Lucas, Sterenn & Soler, Louis-Georges & Revoredo-Giha, Cesar, 2021. "Trend analysis of sustainability claims: The European fisheries and aquaculture markets case," Food Policy, Elsevier, vol. 104(C).
    19. Qiangyi Li & Lan Yang & Fangxin Jiang & Yangqing Liu & Chenyang Guo & Shuya Han, 2022. "Distribution Characteristics, Regional Differences and Spatial Convergence of the Water-Energy-Land-Food Nexus: A Case Study of China," Land, MDPI, vol. 11(9), pages 1-28, September.
    20. Jin, Xuanyi & Jiang, Wenrui & Fang, Delin & Wang, Saige & Chen, Bin, 2024. "Evaluation and driving force analysis of the water-energy‑carbon nexus in agricultural trade for RCEP countries," Applied Energy, Elsevier, vol. 353(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6443-:d:823502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.