IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v6y2023i8d10.1038_s41893-023-01122-8.html
   My bibliography  Save this article

The hidden economic and environmental costs of eliminating kerb-side recycling

Author

Listed:
  • Malak Anshassi

    (Florida Polytechnic University)

  • Timothy G. Townsend

    (University of Florida)

Abstract

Local governments provide household collection of garbage and recyclables on a routine schedule, and these recycling programmes represent the most visible opportunity for everyday citizens to engage in sustainable practices. In the face of unprecedented challenges, and citing costs as the major driver, many US communities are shrinking or eliminating kerb-side recycling. Here we show that when recycling commodity markets were most lucrative in 2011, net US recycling costs were as little as US$3 per household annually, and when markets reached a minimum (in 2018–2020), the annual recycling-programme costs ranged from US$34 to US$42 per household. This investment offsets the greenhouse gas emissions from non-recycled household waste buried in landfills. If local governments restructure recycling programmes to target higher value and embodied carbon-intensive materials, recycling can pay for itself and reduce greenhouse gas emissions. Our analysis highlights that kerb-side recycling provides communities a return on investment similar to or better than climate change mitigation strategies such as voluntary green power purchases and transitioning to electric vehicles. Eliminating recycling squanders one of the easiest opportunities for communities and citizens to mitigate climate change and reduce natural resources demands.

Suggested Citation

  • Malak Anshassi & Timothy G. Townsend, 2023. "The hidden economic and environmental costs of eliminating kerb-side recycling," Nature Sustainability, Nature, vol. 6(8), pages 919-928, August.
  • Handle: RePEc:nat:natsus:v:6:y:2023:i:8:d:10.1038_s41893-023-01122-8
    DOI: 10.1038/s41893-023-01122-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-023-01122-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-023-01122-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riley M. Duren & Andrew K. Thorpe & Kelsey T. Foster & Talha Rafiq & Francesca M. Hopkins & Vineet Yadav & Brian D. Bue & David R. Thompson & Stephen Conley & Nadia K. Colombi & Christian Frankenberg , 2019. "California’s methane super-emitters," Nature, Nature, vol. 575(7781), pages 180-184, November.
    2. Doucette, Reed T. & McCulloch, Malcolm D., 2011. "Modeling the prospects of plug-in hybrid electric vehicles to reduce CO2 emissions," Applied Energy, Elsevier, vol. 88(7), pages 2315-2323, July.
    3. Adriana Gómez-Sanabria & Gregor Kiesewetter & Zbigniew Klimont & Wolfgang Schoepp & Helmut Haberl, 2022. "Potential for future reductions of global GHG and air pollutants from circular waste management systems," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Lakhan, Calvin, 2015. "Diversion, but at what cost? The economic challenges of recycling in Ontario," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 133-142.
    5. Fitzgerald, Garrett C. & Krones, Jonathan S. & Themelis, Nickolas J., 2012. "Greenhouse gas impact of dual stream and single stream collection and separation of recyclables," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 50-56.
    6. Orsi, Francesco & Muratori, Matteo & Rocco, Matteo & Colombo, Emanuela & Rizzoni, Giorgio, 2016. "A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost," Applied Energy, Elsevier, vol. 169(C), pages 197-209.
    7. Jessica A. Gephart & Patrik J. G. Henriksson & Robert W. R. Parker & Alon Shepon & Kelvin D. Gorospe & Kristina Bergman & Gidon Eshel & Christopher D. Golden & Benjamin S. Halpern & Sara Hornborg & Ma, 2021. "Environmental performance of blue foods," Nature, Nature, vol. 597(7876), pages 360-365, September.
    8. Gu, Fu & Wang, Jiqiang & Guo, Jianfeng & Fan, Ying, 2020. "Dynamic linkages between international oil price, plastic stock index and recycle plastic markets in China," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 167-179.
    9. Stijn Ewijk & Julia A. Stegemann & Paul Ekins, 2021. "Limited climate benefits of global recycling of pulp and paper," Nature Sustainability, Nature, vol. 4(2), pages 180-187, February.
    10. Xunchang Fei & Mingliang Fang & Yao Wang, 2021. "Climate change affects land-disposed waste," Nature Climate Change, Nature, vol. 11(12), pages 1004-1005, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Xiu & Li, Wenbo & Yang, Jiameng & Zhang, Linling, 2023. "How convenience and informational tools shape waste separation behavior: A social network approach," Resources Policy, Elsevier, vol. 86(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    2. Giovanni Vinti & Mentore Vaccari, 2022. "Solid Waste Management in Rural Communities of Developing Countries: An Overview of Challenges and Opportunities," Clean Technol., MDPI, vol. 4(4), pages 1-14, November.
    3. Man, Yi & Yan, Yukun & Wang, Xu & Ren, Jingzheng & Xiong, Qingang & He, Zhenglei, 2023. "Overestimated carbon emission of the pulp and paper industry in China," Energy, Elsevier, vol. 273(C).
    4. Tao, Miaomiao, 2024. "Dynamics between electric vehicle uptake and green development: Understanding the role of local government competition," Transport Policy, Elsevier, vol. 146(C), pages 227-240.
    5. Varga, Bogdan Ovidiu, 2013. "Electric vehicles, primary energy sources and CO2 emissions: Romanian case study," Energy, Elsevier, vol. 49(C), pages 61-70.
    6. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    7. Koen Deconinck & Marion Jansen & Carla Barisone, 2023. "Fast and furious: the rise of environmental impact reporting in food systems," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(4), pages 1310-1337.
    8. Brogaard, Line K. & Damgaard, Anders & Jensen, Morten B. & Barlaz, Morton & Christensen, Thomas H., 2014. "Evaluation of life cycle inventory data for recycling systems," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 30-45.
    9. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    10. Esparza, Ángel E. & Rowan, Gillian & Newhook, Ashley & Deglint, Hanford J. & Garrison, Billy & Orth-Lashley, Bryn & Girard, Marianne & Shaw, Warren, 2023. "Analysis of a tiered top-down approach using satellite and aircraft platforms to monitor oil and gas facilities in the Permian basin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    11. Hasan-Basri, Bakti & Mohd Mustafa, Muzafarshah & Bakar, Normizan, 2019. "Are Malaysian Consumers Willing to Pay for Hybrid Cars’ Attributes?," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 53(1), pages 121-134.
    12. Cai, Hua & Hu, Xiaojun & Xu, Ming, 2013. "Impact of emerging clean vehicle system on water stress," Applied Energy, Elsevier, vol. 111(C), pages 644-651.
    13. Raslavičius, Laurencas & Azzopardi, Brian & Keršys, Artūras & Starevičius, Martynas & Bazaras, Žilvinas & Makaras, Rolandas, 2015. "Electric vehicles challenges and opportunities: Lithuanian review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 786-800.
    14. Naylor, Rosamond & Fang, Safari & Fanzo, Jessica, 2023. "A global view of aquaculture policy," Food Policy, Elsevier, vol. 116(C).
    15. Marc Audi & Marc Poulin & Amjad Ali, 2024. "Environmental Impact of Business Freedom and Renewable Energy: A Global Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 672-683, May.
    16. Claude E. Boyd & Aaron A. McNevin & Robert P. Davis, 2022. "The contribution of fisheries and aquaculture to the global protein supply," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 805-827, June.
    17. Zhou, Xi-Yin & Xu, Zhicheng & Zheng, Jialin & Zhou, Ya & Lei, Kun & Fu, Jiafeng & Khu, Soon-Thiam & Yang, Junfeng, 2023. "Internal spillover effect of carbon emission between transportation sectors and electricity generation sectors," Renewable Energy, Elsevier, vol. 208(C), pages 356-366.
    18. Qingbo Tan & Zhuning Wang & Wei Fan & Xudong Li & Xiangguang Li & Fanqi Li & Zihao Zhao, 2022. "Development Path and Model Design of a New Energy Vehicle in China," Energies, MDPI, vol. 16(1), pages 1-15, December.
    19. Manjunath, Archana & Gross, George, 2017. "Towards a meaningful metric for the quantification of GHG emissions of electric vehicles (EVs)," Energy Policy, Elsevier, vol. 102(C), pages 423-429.
    20. Xi Sun & Sophie M. Behr & Merve Kücük, 2024. "Enabling Circular Economy Dynamics in the Plastics and Steel Industries: Perspectives from Multiple Stakeholders," Discussion Papers of DIW Berlin 2093, DIW Berlin, German Institute for Economic Research.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:6:y:2023:i:8:d:10.1038_s41893-023-01122-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.