GIS-Based Modeling for Vegetated Land Fire Prediction in Qaradagh Area, Kurdistan Region, Iraq
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sunil Kumar & Meenakshi & Gopal Bairagi & Vandana & Amit Kumar, 2015. "Identifying triggers for forest fire and assessing fire susceptibility of forests in Indian western Himalaya using geospatial techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 203-217, August.
- Christos Vasilakos & Kostas Kalabokidis & John Hatzopoulos & Ioannis Matsinos, 2009. "Identifying wildland fire ignition factors through sensitivity analysis of a neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(1), pages 125-143, July.
- Wenliang Liu & Shixin Wang & Yi Zhou & Litao Wang & Jinfeng Zhu & Futao Wang, 2016. "Lightning-caused forest fire risk rating assessment based on case-based reasoning: a case study in DaXingAn Mountains of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 347-363, March.
- Merino-de-Miguel, Silvia & Huesca, Margarita & González-Alonso, Federico, 2010. "Modis reflectance and active fire data for burn mapping and assessment at regional level," Ecological Modelling, Elsevier, vol. 221(1), pages 67-74.
- Glasa, Jan & Halada, Ladislav, 2008. "On elliptical model for forest fire spread modeling and simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(1), pages 76-88.
- Jaehoon Jung & Changjae Kim & Shanmuganathan Jayakumar & Seongsam Kim & Soohee Han & Dong Kim & Joon Heo, 2013. "Forest fire risk mapping of Kolli Hills, India, considering subjectivity and inconsistency issues," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 2129-2146, February.
- Keane, Robert E. & Drury, Stacy A. & Karau, Eva C. & Hessburg, Paul F. & Reynolds, Keith M., 2010. "A method for mapping fire hazard and risk across multiple scales and its application in fire management," Ecological Modelling, Elsevier, vol. 221(1), pages 2-18.
- Hamed Adab & Kasturi Kanniah & Karim Solaimani, 2013. "Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1723-1743, February.
- Shruti Sachdeva & Tarunpreet Bhatia & A. K. Verma, 2018. "GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1399-1418, July.
- Wenliang Liu & Shixin Wang & Yi Zhou & Litao Wang & Jinfeng Zhu & Futao Wang, 2016. "Lightning-caused forest fire risk rating assessment based on case-based reasoning: a case study in DaXingAn Mountains of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 347-363, March.
- Naderpour, Mohsen & Rizeei, Hossein Mojaddadi & Khakzad, Nima & Pradhan, Biswajeet, 2019. "Forest fire induced Natech risk assessment: A survey of geospatial technologies," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ghafar Salavati & Ebrahim Saniei & Ebrahim Ghaderpour & Quazi K. Hassan, 2022. "Wildfire Risk Forecasting Using Weights of Evidence and Statistical Index Models," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
- Saeedeh Eskandari & Mahdis Amiri & Nitheshnirmal Sãdhasivam & Hamid Reza Pourghasemi, 2020. "Comparison of new individual and hybrid machine learning algorithms for modeling and mapping fire hazard: a supplementary analysis of fire hazard in different counties of Golestan Province in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 305-327, October.
- Osama Ashraf Mohammed & Sasan Vafaei & Mehdi Mirzaei Kurdalivand & Sabri Rasooli & Chaolong Yao & Tongxin Hu, 2022. "A Comparative Study of Forest Fire Mapping Using GIS-Based Data Mining Approaches in Western Iran," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
- Naderpour, Mohsen & Rizeei, Hossein Mojaddadi & Khakzad, Nima & Pradhan, Biswajeet, 2019. "Forest fire induced Natech risk assessment: A survey of geospatial technologies," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
- Dingli Liu & Zhisheng Xu & Chuangang Fan, 2019. "Predictive analysis of fire frequency based on daily temperatures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1175-1189, July.
- José Manuel Zúñiga-Vásquez & Marín Pompa-García, 2019. "The occurrence of forest fires in Mexico presents an altitudinal tendency: a geospatial analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 213-224, March.
- Gianluigi Busico & Elisabetta Giuditta & Nerantzis Kazakis & Nicolò Colombani, 2019. "A Hybrid GIS and AHP Approach for Modelling Actual and Future Forest Fire Risk Under Climate Change Accounting Water Resources Attenuation Role," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
- Chen, Yu & Wang, Yuandi & Zhao, Changyi, 2024. "From riches to digitalization: The role of AMC in overcoming challenges of digital transformation in resource-rich regions," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
- Dominic Royé & Nieves Lorenzo & Javier Martin-Vide, 2018. "Spatial–temporal patterns of cloud-to-ground lightning over the northwest Iberian Peninsula during the period 2010–2015," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 857-884, June.
- Ricci, Federica & Misuri, Alessio & Scarponi, Giordano Emrys & Cozzani, Valerio & Demichela, Micaela, 2024. "Vulnerability Assessment of Industrial Sites to Interface Fires and Wildfires," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Santos Daniel Chicas & Jonas Østergaard Nielsen, 2022. "Who are the actors and what are the factors that are used in models to map forest fire susceptibility? A systematic review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2417-2434, December.
- T. M. Giannaros & K. Lagouvardos & V. Kotroni, 2017. "Performance evaluation of an operational lightning forecasting system in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 1-18, January.
- Seidl, Rupert & Fernandes, Paulo M. & Fonseca, Teresa F. & Gillet, François & Jönsson, Anna Maria & Merganičová, Katarína & Netherer, Sigrid & Arpaci, Alexander & Bontemps, Jean-Daniel & Bugmann, Hara, 2011. "Modelling natural disturbances in forest ecosystems: a review," Ecological Modelling, Elsevier, vol. 222(4), pages 903-924.
- Hamed Adab, 2017. "Landfire hazard assessment in the Caspian Hyrcanian forest ecoregion with the long-term MODIS active fire data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1807-1825, July.
- Wang, Ning & Zhao, Shiyue & Wang, Sutong, 2024. "A novel clustering-based resampling with cost-sensitive boosting method to model and map wildfire susceptibility," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Wang, Ning & Xu, Yan & Wang, Sutong, 2022. "Interpretable boosting tree ensemble method for multisource building fire loss prediction," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
- Shruti Sachdeva & Tarunpreet Bhatia & A. K. Verma, 2018. "GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1399-1418, July.
- Olimpia Smaranda Mintaș & Daniel Mierliță & Octavian Berchez & Alina Stanciu & Alina Osiceanu & Adrian Gheorghe Osiceanu, 2022. "Analysis of the Sustainability of Livestock Farms in the Area of the Southwest of Bihor County to Climate Change," Sustainability, MDPI, vol. 14(14), pages 1-32, July.
- Mohamad Khoirun Najib & Sri Nurdiati & Ardhasena Sopaheluwakan, 2022. "Multivariate fire risk models using copula regression in Kalimantan, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1263-1283, September.
More about this item
Keywords
fires; Kurdistan Region; logistic regression; Sentinel-2;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6194-:d:819336. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.