IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v225y2022ics0951832022002332.html
   My bibliography  Save this article

Interpretable boosting tree ensemble method for multisource building fire loss prediction

Author

Listed:
  • Wang, Ning
  • Xu, Yan
  • Wang, Sutong

Abstract

Building fires may cause enormous property loss. Disaster relief organizations and post-disaster recovery efforts benefit from the accurate and interpretable prediction of property loss. To solve this problem, we propose a novel interpretable boosting tree ensemble method (IBTEM), which is of practical significance for providing decision support for dispatching aid and mobilizing recovery resources. First, we fuse multisource datasets including National Fire Incident Reporting System (NFIRS) dataset and National Oceanic and Atmospheric Administration (NOAA) dataset from 2012 to 2016. Second, we construct four variable scenario subsets to select related variables for building fire loss. Third, we adopt Winsorization, logarithmic transformation, recursive feature elimination and weighted voting strategies to create an ensemble of boosting trees. Fourth, we conduct interpretable Shapley additive explanations to analyze the model internal mechanism. The proposed IBTEM is compared with other popular machine learning methods and the experimental results show the IBTEM achieves outstanding superiority. Property value, fire spread and number of stories with minor damage are verified the most effective variables for loss prediction. In conclusion, the IBTEM realizes accurate and interpretable loss prediction of building fires, and assists relevant departments in making disaster relief decisions in a timelier manner.

Suggested Citation

  • Wang, Ning & Xu, Yan & Wang, Sutong, 2022. "Interpretable boosting tree ensemble method for multisource building fire loss prediction," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002332
    DOI: 10.1016/j.ress.2022.108587
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022002332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108587?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cárdenas-Gallo, Iván & Sarmiento, Carlos A. & Morales, Gilberto A. & Bolivar, Manuel A. & Akhavan-Tabatabaei, Raha, 2017. "An ensemble classifier to predict track geometry degradation," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 53-60.
    2. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C. & Ariffin, A.K. & Singh, S.S., 2021. "Evidence based risk analysis of fire and explosion accident scenarios in FPSOs," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Daniel W. Apley & Jingyu Zhu, 2020. "Visualizing the effects of predictor variables in black box supervised learning models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1059-1086, September.
    4. Li, Zhixiong & Wu, Dazhong & Hu, Chao & Terpenny, Janis, 2019. "An ensemble learning-based prognostic approach with degradation-dependent weights for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 110-122.
    5. Worrell, Clarence & Luangkesorn, Louis & Haight, Joel & Congedo, Thomas, 2019. "Machine learning of fire hazard model simulations for use in probabilistic safety assessments at nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 128-142.
    6. Tan, Samson & Moinuddin, Khalid, 2019. "Systematic review of human and organizational risks for probabilistic risk analysis in high-rise buildings," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 233-250.
    7. Wen-Ko Hsu & Pei-Chiung Huang & Ching-Cheng Chang & Cheng-Wu Chen & Dung-Moung Hung & Wei-Ling Chiang, 2011. "An integrated flood risk assessment model for property insurance industry in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1295-1309, September.
    8. Zou, Qiling & Chen, Suren, 2021. "Resilience-based Recovery Scheduling of Transportation Network in Mixed Traffic Environment: A Deep-Ensemble-Assisted Active Learning Approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Hanea, D.M. & Jagtman, H.M. & Ale, B.J.M., 2012. "Analysis of the Schiphol Cell Complex fire using a Bayesian belief net based model," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 115-124.
    10. Loet Leydesdorff & Stephen Bensman, 2006. "Classification and powerlaws: The logarithmic transformation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(11), pages 1470-1486, September.
    11. Yu, Yun-Chi & Gardoni, Paolo, 2022. "Predicting road blockage due to building damage following earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Himoto, Keisuke & Suzuki, Keichi, 2021. "Computational framework for assessing the fire resilience of buildings using the multi-layer zone model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Zhang, Chen & Hu, Di & Yang, Tao, 2022. "Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    14. Thomas Jagger & James Elsner & R. Burch, 2011. "Climate and solar signals in property damage losses from hurricanes affecting the United States," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 541-557, July.
    15. Naderpour, Mohsen & Rizeei, Hossein Mojaddadi & Khakzad, Nima & Pradhan, Biswajeet, 2019. "Forest fire induced Natech risk assessment: A survey of geospatial technologies," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    16. Ioannou, I. & Aspinall, W. & Rush, D. & Bisby, L. & Rossetto, T., 2017. "Expert judgment-based fragility assessment of reinforced concrete buildings exposed to fire," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 105-127.
    17. Puneet Agarwal & Junlin Tang & Adithya Narayanan Lakshmi Narayanan & Jun Zhuang, 2020. "Big Data and Predictive Analytics in Fire Risk Using Weather Data," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1438-1449, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ning & Zhao, Shiyue & Wang, Sutong, 2024. "A novel clustering-based resampling with cost-sensitive boosting method to model and map wildfire susceptibility," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji, 2023. "Enhancing the explainability of regression-based polynomial chaos expansion by Shapley additive explanations," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Ding, Zhikun & Xu, Shengqu & Xie, Xiaofeng & Zheng, Kairui & Wang, Daochu & Fan, Jianhao & Li, Hong & Liao, Longhui, 2024. "A building information modeling-based fire emergency evacuation simulation system for large infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Sun, Bin & Li, Yan & Zhang, Yangyang & Guo, Tong, 2024. "Multi-source heterogeneous data fusion prediction technique for the utility tunnel fire detection," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    5. Kumar, Anil & Kumar, Rajesh & Tang, Hesheng & Xiang, Jiawei, 2024. "A comprehensive study on developing an intelligent framework for identification and quantitative evaluation of the bearing defect size," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ning & Zhao, Shiyue & Wang, Sutong, 2024. "A novel clustering-based resampling with cost-sensitive boosting method to model and map wildfire susceptibility," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    3. Hosseini, Yaser & Mohammadi, Reza Karami & Yang, Tony Y., 2024. "A comprehensive approach in post-earthquake blockage prediction of urban road network and emergency resilience optimization," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Pan, Xing & Dang, Yuheng & Wang, Huixiong & Hong, Dongpao & Li, Yuehong & Deng, Hongxu, 2022. "Resilience model and recovery strategy of transportation network based on travel OD-grid analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Zhao, Taiyi & Tang, Yuchun & Li, Qiming & Wang, Jingquan, 2023. "Resilience-oriented network reconfiguration strategies for community emergency medical services," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. Liu, Zengkai & Ma, Qiang & Cai, Baoping & Shi, Xuewei & Zheng, Chao & Liu, Yonghong, 2022. "Risk coupling analysis of subsea blowout accidents based on dynamic Bayesian network and NK model," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    7. Opabola, Eyitayo A. & Galasso, Carmine, 2024. "A probabilistic framework for post-disaster recovery modeling of buildings and electric power networks in developing countries," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    9. Ruairi C. Robertson & Thaddeus J. Edens & Lynnea Carr & Kuda Mutasa & Ethan K. Gough & Ceri Evans & Hyun Min Geum & Iman Baharmand & Sandeep K. Gill & Robert Ntozini & Laura E. Smith & Bernard Chasekw, 2023. "The gut microbiome and early-life growth in a population with high prevalence of stunting," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Leandro Andrián & Oscar Mauricio Valencia, 2023. "Past the Tipping Point? Assessing Debt Overhang in Latin America and the Caribbean," IDB Publications (Book Chapters), in: Andrew Powell & Oscar Mauricio Valencia (ed.), Dealing with Debt, edition 1, chapter 8, pages 183-196, Inter-American Development Bank.
    11. Wen-Ko Hsu & Wei-Ling Chiang & Qiang Xue & Dung-Mou Hung & Pei-Chun Huang & Cheng-Wu Chen & Chung-Hung Tsai, 2013. "A probabilistic approach for earthquake risk assessment based on an engineering insurance portfolio," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1559-1571, February.
    12. Seo, Seung-Kwon & Yoon, Young-Gak & Lee, Ju-sung & Na, Jonggeol & Lee, Chul-Jin, 2022. "Deep Neural Network-based Optimization Framework for Safety Evacuation Route during Toxic Gas Leak Incidents," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    13. Kurmankhojayev, Daniyar & Li, Guoyuan & Chen, Anthony, 2024. "Link criticality index: Refinement, framework extension, and a case study," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    15. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    16. Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
    17. C. Chen & T. Chen & Y. Chen & S. Yu & P. Chung, 2013. "Storm surge prediction with management information systems: A case study of estimating value and observations system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1009-1027, March.
    18. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    19. Hu'e Sullivan & Hurlin Christophe & P'erignon Christophe & Saurin S'ebastien, 2022. "Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring," Papers 2212.05866, arXiv.org, revised Jun 2023.
    20. Zhang, Chanyuan (Abigail) & Cho, Soohyun & Vasarhelyi, Miklos, 2022. "Explainable Artificial Intelligence (XAI) in auditing," International Journal of Accounting Information Systems, Elsevier, vol. 46(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.