IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v65y2013i3p2129-2146.html
   My bibliography  Save this article

Forest fire risk mapping of Kolli Hills, India, considering subjectivity and inconsistency issues

Author

Listed:
  • Jaehoon Jung
  • Changjae Kim
  • Shanmuganathan Jayakumar
  • Seongsam Kim
  • Soohee Han
  • Dong Kim
  • Joon Heo

Abstract

Forest fires have adverse ecological, economic, and social impacts. In this light, the present research aimed, first, to construct a fire risk model using a GIS-based multi-criteria analysis and second, to derive a forest fire risk modeling strategy that alleviates the problem of inconsistency in the assigning of scores and weights to forest fire categories and layers. Third, the local-orientation effects and causes, which are relevant to the subjectivity problem, were investigated by comparing the risk scoring and weighting outcomes from Indian and Korean expert groups (IEG and KEG). Fourth, forest fire factors that can be considered regional and global also were investigated. Kolli Hills, India, was selected as the study area in this research. In the interests of alleviating the inconsistency problem, a weighting and scoring scheme based on the analytic hierarchy process was applied. The experiences from the existence of prevailing westerly winds, the most common forest types (i.e., in Korea: pine trees), and the different anthropogenic pressures between Korea and India resulted in the different scoring and weighting decisions of the two expert groups. Among the five fire risk factors, slope, road, and settlement can be considered to be global factors. On the other hand, forest cover and aspect are regional factors that can be more influenced by local environmental conditions. When considering the producer’s accuracy, the approach of the IEG together with the natural breaks thresholding method provided the best fire risk mapping result. On the other hand, the model from the IEG with equal interval provided the best result from the viewpoint of user’s accuracy and overall accuracy. Overall, this paper proposes a forest fire risk mapping procedure as basis for developing a global forest fire risk modeling in the future, where a series of standardized modeling steps and variables should be defined. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Jaehoon Jung & Changjae Kim & Shanmuganathan Jayakumar & Seongsam Kim & Soohee Han & Dong Kim & Joon Heo, 2013. "Forest fire risk mapping of Kolli Hills, India, considering subjectivity and inconsistency issues," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 2129-2146, February.
  • Handle: RePEc:spr:nathaz:v:65:y:2013:i:3:p:2129-2146
    DOI: 10.1007/s11069-012-0465-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0465-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0465-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shon, Cheolho, 2006. "The Current Situation and Policy Direction of Agroforestry in Korea," Journal of Rural Development/Nongchon-Gyeongje, Korea Rural Economic Institute, vol. 29(1), June.
    2. Brigitte Leblon, 2005. "Monitoring Forest Fire Danger with Remote Sensing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 35(3), pages 343-359, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinghu Pan & Weiguo Wang & Junfeng Li, 2016. "Building probabilistic models of fire occurrence and fire risk zoning using logistic regression in Shanxi Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1879-1899, April.
    2. Gianluigi Busico & Elisabetta Giuditta & Nerantzis Kazakis & Nicolò Colombani, 2019. "A Hybrid GIS and AHP Approach for Modelling Actual and Future Forest Fire Risk Under Climate Change Accounting Water Resources Attenuation Role," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    3. Sarkawt G. Salar & Arsalan Ahmed Othman & Sabri Rasooli & Salahalddin S. Ali & Zaid T. Al-Attar & Veraldo Liesenberg, 2022. "GIS-Based Modeling for Vegetated Land Fire Prediction in Qaradagh Area, Kurdistan Region, Iraq," Sustainability, MDPI, vol. 14(10), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faisal, Abdullah Al & Kafy, Abdulla - Al & Afroz, Farzana & Rahaman, Zullyadini A., 2023. "Exploring and forecasting spatial and temporal patterns of fire hazard risk in Nepal's tiger conservation zones," Ecological Modelling, Elsevier, vol. 476(C).
    2. Th. Zagas & D. Raptis & D. Zagas & D. Karamanolis, 2013. "Planning and assessing the effectiveness of traditional silvicultural treatments for mitigating wildfire hazard in pine woodlands of Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 545-561, January.
    3. Amjaad T. Altakhaineh & Rula Alrawashdeh & Jiafeng Zhou, 2024. "Machine Learning-Aided Dual-Function Microfluidic SIW Sensor Antenna for Frost and Wildfire Detection Applications," Energies, MDPI, vol. 17(20), pages 1-27, October.
    4. Hamed Adab & Kasturi Kanniah & Karim Solaimani, 2013. "Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1723-1743, February.
    5. Chijoo Lee & Hyungjun Yang, 2018. "A system to detect potential fires using a thermographic camera," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 511-523, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:65:y:2013:i:3:p:2129-2146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.