IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p4623-d540445.html
   My bibliography  Save this article

Examining Evacuee Response to Emergency Communications with Agent-Based Simulations

Author

Listed:
  • C. Natalie van der Wal

    (Multi-Actor Systems Department, Faculty of Policy, Management and Technology, Delft University of Technology, 2628 BX Delft, The Netherlands)

  • Daniel Formolo

    (Department of Computer Science, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands)

  • Mark A. Robinson

    (Socio-Technical Centre, Leeds University Business School, University of Leeds, Leeds LS6 1AN, UK)

  • Steven Gwynne

    (Mövement Strategies, London EC1N 8TE, UK
    Division of Fire Safety Engineering, University of Lund, Box 117, 221 00 Lund, Sweden)

Abstract

To improve communication during emergencies, this research introduces an agent-based modeling (ABM) method to test the effect of psychological emergency communication strategies on evacuation performance. We follow a generative social science approach in which agent-based simulations allow for testing different candidate solutions. Unlike traditional methods, such as laboratory experiments and field observations, ABM simulation allows high-risk and infrequent scenarios to be empirically examined before applying the lessons in the real world. This is essential, as emergency communication with diverse crowds can be challenging due to language barriers, conflicting social identities, different cultural mindsets, and crowd demographics. Improving emergency communication could therefore improve evacuations, reduce injuries, and ultimately save lives. We demonstrate this ABM method by determining the effectiveness of three communication strategies for different crowd compositions in transport terminals: (1) dynamic emergency exit floor lighting directing people to exits, (2) staff guiding people to exits with verbal and physical instructions, and (3) public announcements in English. The simulation results indicated that dynamic emergency exit floor lighting and staff guiding people to exits were only beneficial for high-density crowds and those unfamiliar with the environment. Furthermore, English public announcements actually slowed the evacuation for mainly English-speaking crowds, due to simultaneous egress causing congestion at exits, but improved evacuation speed in multicultural, multilingual crowds. Based on these results, we make recommendations about which communication strategies to apply in the real world to demonstrate the utility of this ABM simulation approach for risk assessment practice.

Suggested Citation

  • C. Natalie van der Wal & Daniel Formolo & Mark A. Robinson & Steven Gwynne, 2021. "Examining Evacuee Response to Emergency Communications with Agent-Based Simulations," Sustainability, MDPI, vol. 13(9), pages 1-24, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4623-:d:540445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/4623/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/4623/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    2. D. Knuth & D. Kehl & L. Hulse & L. Spangenberg & E. Brähler & S. Schmidt, 2015. "Risk perception and emergency experience: comparing a representative German sample with German emergency survivors," Journal of Risk Research, Taylor & Francis Journals, vol. 18(5), pages 581-601, May.
    3. Jungbu Kim & Seong Soo Oh, 2015. "Confidence, knowledge, and compliance with emergency evacuation," Journal of Risk Research, Taylor & Francis Journals, vol. 18(1), pages 111-126, January.
    4. Matt Dombroski & Baruch Fischhoff & Paul Fischbeck, 2006. "Predicting Emergency Evacuation and Sheltering Behavior: A Structured Analytical Approach," Risk Analysis, John Wiley & Sons, vol. 26(6), pages 1675-1688, December.
    5. Katherine E. Rowan, 1994. "Why Rules for Risk Communication Are Not Enough: A Problem‐Solving Approach to Risk Communication," Risk Analysis, John Wiley & Sons, vol. 14(3), pages 365-374, June.
    6. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    7. Simcha Ronen & Oded Shenkar, 2013. "Mapping world cultures: Cluster formation, sources and implications," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 44(9), pages 867-897, December.
    8. Xuewei Ji & Wenguo Weng & Weicheng Fan, 2008. "Cellular Automata‐Based Systematic Risk Analysis Approach for Emergency Response," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1247-1260, October.
    9. Anna Charisse Farr & Tristan Kleinschmidt & Prasad Yarlagadda & Kerrie Mengersen, 2012. "Wayfinding: A simple concept, a complex process," Transport Reviews, Taylor & Francis Journals, vol. 32(6), pages 715-743, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinghong Wang & Siuming Lo & Qingsong Wang & Jinhua Sun & Honglin Mu, 2013. "Risk of Large‐Scale Evacuation Based on the Effectiveness of Rescue Strategies Under Different Crowd Densities," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1553-1563, August.
    2. Schlägel, Christopher & Sarstedt, Marko, 2016. "Assessing the measurement invariance of the four-dimensional cultural intelligence scale across countries: A composite model approach," European Management Journal, Elsevier, vol. 34(6), pages 633-649.
    3. Matthew S. VanDyke & Andy J. King, 2018. "Using the CAUSE Model to Understand Public Communication about Water Risks: Perspectives from Texas Groundwater District Officials on Drought and Availability," Risk Analysis, John Wiley & Sons, vol. 38(7), pages 1378-1389, July.
    4. Yanbo Zhang & Yibao Wang & Ahmad Bayiz Ahmad & Ashfaq Ahmad Shah & Wen Qing, 2021. "How Do Individual-Level Characteristics Influence Cross-Domain Risk Perceptions Among Chinese Urban Residents?," SAGE Open, , vol. 11(2), pages 21582440211, April.
    5. Rahman, Shaikh Moksadur, 2020. "Relationship between Job Satisfaction and Turnover Intention: Evidence from Bangladesh," Asian Business Review, Asian Business Consortium, vol. 10(2), pages 99-108.
    6. Sisira S. Withanachchi & Ilia Kunchulia & Giorgi Ghambashidze & Rami Al Sidawi & Teo Urushadze & Angelika Ploeger, 2018. "Farmers’ Perception of Water Quality and Risks in the Mashavera River Basin, Georgia: Analyzing the Vulnerability of the Social-Ecological System through Community Perceptions," Sustainability, MDPI, vol. 10(9), pages 1-26, August.
    7. Wang Kai, 2019. "Towards a Taxonomy of Idea Generation Techniques," Foundations of Management, Sciendo, vol. 11(1), pages 65-80, January.
    8. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    9. Bevilacqua, Maurizio & Ciarapica, Filippo Emanuele, 2018. "Human factor risk management in the process industry: A case study," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 149-159.
    10. Naveena Prakasam & Louisa Huxtable-Thomas, 2021. "Reddit: Affordances as an Enabler for Shifting Loyalties," Information Systems Frontiers, Springer, vol. 23(3), pages 723-751, June.
    11. Colin Jerolmack & Alexandra K. Murphy, 2019. "The Ethical Dilemmas and Social Scientific Trade-offs of Masking in Ethnography," Sociological Methods & Research, , vol. 48(4), pages 801-827, November.
    12. Valeriy Makarov & Albert Bakhtizin, 2014. "The Estimation Of The Regions’ Efficiency Of The Russian Federation Including The Intellectual Capital, The Characteristics Of Readiness For Innovation, Level Of Well-Being, And Quality Of Life," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 9-30.
    13. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    14. Kristine Edgar Danielyan & Samvel Grigoriy Chailyan, 2019. "Delineation of Effectors Impact on The Human Brain Derived Phosphoribosylpyrophosphate Synthetase-1 Activity," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 24(1), pages 17918-17926, December.
    15. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    16. Mohammad AL-Zoubi, 2018. "The Role of Technology, Organization, and Environment Factors in Enterprise Resource Planning Implementation Success in Jordan," International Business Research, Canadian Center of Science and Education, vol. 11(8), pages 48-65, August.
    17. Damgaard, Mette Trier & Nielsen, Helena Skyt, 2018. "Nudging in education," Economics of Education Review, Elsevier, vol. 64(C), pages 313-342.
    18. Jan Ženka & Jan Macháček & Pavel Michna & Pavel Kořízek, 2021. "Navigational Needs and Preferences of Hospital Patients and Visitors: What Prospects for Smart Technologies?," IJERPH, MDPI, vol. 18(3), pages 1-20, January.
    19. Nicole D. Sintov & P. Wesley Schultz, 2017. "Adjustable Green Defaults Can Help Make Smart Homes More Sustainable," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    20. Hwang, ShinYoung & Kim Seongcheol, 2017. "What triggers the use of mIM service provider’s sequel O2O service extensions?," 14th ITS Asia-Pacific Regional Conference, Kyoto 2017: Mapping ICT into Transformation for the Next Information Society 168494, International Telecommunications Society (ITS).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4623-:d:540445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.