IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2987-d513691.html
   My bibliography  Save this article

Cooling Degree Models and Future Energy Demand in the Residential Sector. A Seven-Country Case Study

Author

Listed:
  • Raúl Castaño-Rosa

    (Department of Electrical Engineering, University Carlos III of Madrid, Avenue of the University 30, 28911 Leganés, Spain
    Faculty of the Built Environment, Tampere University, Korkeakoulunkatu 1, 33720 Tampere, Finland)

  • Roberto Barrella

    (Chair of Energy and Poverty—ICAI School of Engineering, Comillas Pontifical University, C. Alberto Aguilera, 25, 28015 Madrid, Spain)

  • Carmen Sánchez-Guevara

    (School of Architecture (ETSAM), Universidad Politécnica de Madrid (UPM), Spain, Avda. Juan de Herrera 4, 28040 Madrid, Spain)

  • Ricardo Barbosa

    (ISISE, Department of Civil Engineering, University of Minho, 4800-058 Guimarães, Portugal)

  • Ioanna Kyprianou

    (Energy, Environment, Water Research Centre (EEWRC), The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus)

  • Eleftheria Paschalidou

    (Applied Economics Laboratory (AELab), School of Economics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece)

  • Nikolaos S. Thomaidis

    (Applied Economics Laboratory (AELab), School of Economics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece)

  • Dusana Dokupilova

    (Institute for Forecasting, Centre of Social and Psychological Studies, Slovak Academy of Sciences, 811 05 Bratislava, Slovakia)

  • João Pedro Gouveia

    (CENSE—Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal)

  • József Kádár

    (Haifa Center for German and European Studies, University of Haifa, Abba Khoushy Ave 199, Haifa 3498838, Israel
    Arava Institute for Environmental Studies, and The Dead Sea and Arava Science Center, Kibbutz Ketura, D.N. Hevel Eilot 88840, Israel)

  • Tareq Abu Hamed

    (Arava Institute for Environmental Studies, and The Dead Sea and Arava Science Center, Kibbutz Ketura, D.N. Hevel Eilot 88840, Israel)

  • Pedro Palma

    (CENSE—Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal)

Abstract

The intensity and duration of hot weather and the number of extreme weather events, such as heatwaves, are increasing, leading to a growing need for space cooling energy demand. Together with the building stock’s low energy performance, this phenomenon may also increase households’ energy consumption. On the other hand, the low level of ownership of cooling equipment can cause low energy consumption, leading to a lack of indoor thermal comfort and several health-related problems, yet increasing the risk of energy poverty in summer. Understanding future temperature variations and the associated impacts on building cooling demand will allow mitigating future issues related to a warmer climate. In this respect, this paper analyses the effects of change in temperatures in the residential sector cooling demand in 2050 for a case study of nineteen cities across seven countries: Cyprus, Finland, Greece, Israel, Portugal, Slovakia, and Spain, by estimating cooling degree days and hours (CDD and CDH). CDD and CDH are calculated using both fixed and adaptive thermal comfort temperature thresholds for 2020 and 2050, understanding their strengths and weaknesses to assess the effects of warmer temperatures. Results suggest a noticeable average increase in CDD and CDH values, up to double, by using both thresholds for 2050, with a particular interest in northern countries where structural modifications in the building stock and occupants’ behavior should be anticipated. Furthermore, the use of the adaptive thermal comfort threshold shows that the projected temperature increases for 2050 might affect people’s capability to adapt their comfort band (i.e., indoor habitability) as temperatures would be higher than the maximum admissible values for people’s comfort and health.

Suggested Citation

  • Raúl Castaño-Rosa & Roberto Barrella & Carmen Sánchez-Guevara & Ricardo Barbosa & Ioanna Kyprianou & Eleftheria Paschalidou & Nikolaos S. Thomaidis & Dusana Dokupilova & João Pedro Gouveia & József Ká, 2021. "Cooling Degree Models and Future Energy Demand in the Residential Sector. A Seven-Country Case Study," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2987-:d:513691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2987/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2987/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Papakostas, K. & Kyriakis, N., 2005. "Heating and cooling degree-hours for Athens and Thessaloniki, Greece," Renewable Energy, Elsevier, vol. 30(12), pages 1873-1880.
    2. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    3. Randazzo, Teresa & De Cian, Enrica & Mistry, Malcolm N., 2020. "Air conditioning and electricity expenditure: The role of climate in temperate countries," Economic Modelling, Elsevier, vol. 90(C), pages 273-287.
    4. Roshan, Gh.R. & Ghanghermeh, A.A. & Attia, S., 2017. "Determining new threshold temperatures for cooling and heating degree day index of different climatic zones of Iran," Renewable Energy, Elsevier, vol. 101(C), pages 156-167.
    5. Eva Llera-Sastresa & Sabina Scarpellini & Pilar Rivera-Torres & Juan Aranda & Ignacio Zabalza-Bribián & Alfonso Aranda-Usón, 2017. "Energy Vulnerability Composite Index in Social Housing, from a Household Energy Poverty Perspective," Sustainability, MDPI, vol. 9(5), pages 1-20, April.
    6. Gouveia, João Pedro & Seixas, Júlia & Mestre, Ana, 2017. "Daily electricity consumption profiles from smart meters - Proxies of behavior for space heating and cooling," Energy, Elsevier, vol. 141(C), pages 108-122.
    7. Roberto Barrella & Irene Priego & José Ignacio Linares & Eva Arenas & José Carlos Romero & Efraim Centeno, 2020. "Feasibility Study of a Centralised Electrically Driven Air Source Heat Pump Water Heater to Face Energy Poverty in Block Dwellings in Madrid (Spain)," Energies, MDPI, vol. 13(11), pages 1-23, May.
    8. J. Lelieveld & P. Hadjinicolaou & E. Kostopoulou & J. Chenoweth & M. Maayar & C. Giannakopoulos & C. Hannides & M. Lange & M. Tanarhte & E. Tyrlis & E. Xoplaki, 2012. "Climate change and impacts in the Eastern Mediterranean and the Middle East," Climatic Change, Springer, vol. 114(3), pages 667-687, October.
    9. Gouveia, João Pedro & Fortes, Patrícia & Seixas, Júlia, 2012. "Projections of energy services demand for residential buildings: Insights from a bottom-up methodology," Energy, Elsevier, vol. 47(1), pages 430-442.
    10. Jakubcionis, Mindaugas & Carlsson, Johan, 2017. "Estimation of European Union residential sector space cooling potential," Energy Policy, Elsevier, vol. 101(C), pages 225-235.
    11. Gunnar Eskeland & Torben Mideksa, 2010. "Electricity demand in a changing climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(8), pages 877-897, December.
    12. Yuan, Shengxi & Stainsby, Wendell & Li, Mo & Xu, Kewei & Waite, Michael & Zimmerle, Dan & Feiock, Richard & Ramaswami, Anu & Modi, Vijay, 2019. "Future energy scenarios with distributed technology options for residential city blocks in three climate regions of the United States," Applied Energy, Elsevier, vol. 237(C), pages 60-69.
    13. Marina Economidou & Paolo Zangheri & Andreas Müller & Lukas Kranzl, 2018. "Financing the Renovation of the Cypriot Building Stock: An Assessment of the Energy Saving Potential of Different Policy Scenarios Based on the Invert/EE-Lab Model," Energies, MDPI, vol. 11(11), pages 1-25, November.
    14. Leonidas Mantzos & Tobias Wiesenthal & Frederik Neuwahl & Mate Rozsai, 2019. "The POTEnCIA Central scenario: An EU energy outlook to 2050," JRC Research Reports JRC118353, Joint Research Centre.
    15. Ciulla, G. & D'Amico, A. & Lo Brano, V. & Traverso, M., 2019. "Application of optimized artificial intelligence algorithm to evaluate the heating energy demand of non-residential buildings at European level," Energy, Elsevier, vol. 176(C), pages 380-391.
    16. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    17. Tettey, Uniben Yao Ayikoe & Dodoo, Ambrose & Gustavsson, Leif, 2017. "Energy use implications of different design strategies for multi-storey residential buildings under future climates," Energy, Elsevier, vol. 138(C), pages 846-860.
    18. Oktay, Z. & Coskun, C. & Dincer, I., 2011. "A new approach for predicting cooling degree-hours and energy requirements in buildings," Energy, Elsevier, vol. 36(8), pages 4855-4863.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Núñez-Peiró & Anna Mavrogianni & Phil Symonds & Carmen Sánchez-Guevara Sánchez & F. Javier Neila González, 2021. "Modelling Long-Term Urban Temperatures with Less Training Data: A Comparative Study Using Neural Networks in the City of Madrid," Sustainability, MDPI, vol. 13(15), pages 1-23, July.
    2. Adriana Grigorescu & Camelia Speranta Pirciog & Cristina Lincaru, 2024. "Space–Time Forecasting of Heating & Cooling Energy Needs as an Energy Poverty Measure in Romania," Energies, MDPI, vol. 17(20), pages 1-19, October.
    3. Kristian Fabbri, 2024. "Energy Poverty and Poor Buildings: A Brief Literature Review to Promote New Topics for Future Studies," Sustainability, MDPI, vol. 16(22), pages 1-16, November.
    4. Kondi-Akara, Ghafi & Hingray, Benoit & Francois, Baptiste & Diedhiou, Arona, 2023. "Recent trends in urban electricity consumption for cooling in West and Central African countries," Energy, Elsevier, vol. 276(C).
    5. Lise Desvallées, 2022. "Low-carbon retrofits in social housing: Energy efficiency, multidimensional energy poverty, and domestic comfort strategies in southern Europe [Social housing providers have a significant amount of," Post-Print hal-03456394, HAL.
    6. Roberto Barrella & José Carlos Romero & Lucía Mariño, 2022. "Proposing a Novel Minimum Income Standard Approach to Energy Poverty Assessment: A European Case Study," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    7. Stojilovska, Ana & Guyet, Rachel & Mahoney, Katherine & Gouveia, João Pedro & Castaño-Rosa, Raúl & Živčič, Lidija & Barbosa, Ricardo & Tkalec, Tomislav, 2022. "Energy poverty and emerging debates: Beyond the traditional triangle of energy poverty drivers," Energy Policy, Elsevier, vol. 169(C).
    8. Alireza Karimi & You Joung Kim & Negar Mohammad Zadeh & Antonio García-Martínez & Shahram Delfani & Robert D. Brown & David Moreno-Rangel & Pir Mohammad, 2022. "Assessment of Outdoor Design Conditions on the Energy Performance of Cooling Systems in Future Climate Scenarios—A Case Study over Three Cities of Texas, Unites States," Sustainability, MDPI, vol. 14(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    2. Angel Manuel Benitez Rodriguez & Ian Michael Trotter, 2019. "Climate change scenarios for Paraguayan power demand 2017–2050," Climatic Change, Springer, vol. 156(3), pages 425-445, October.
    3. Enrica Cian & Ian Sue Wing, 2019. "Global Energy Consumption in a Warming Climate," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 365-410, February.
    4. François Cohen & Matthieu Glachant & Magnus Söderberg, 2017. "The cost of adapting to climate change: evidence from the US residential sector," Working Papers hal-01695171, HAL.
    5. Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
    6. Jakubcionis, Mindaugas & Carlsson, Johan, 2018. "Estimation of European Union service sector space cooling potential," Energy Policy, Elsevier, vol. 113(C), pages 223-231.
    7. Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.
    8. Ayikoe Tettey, Uniben Yao & Gustavsson, Leif, 2020. "Energy savings and overheating risk of deep energy renovation of a multi-storey residential building in a cold climate under climate change," Energy, Elsevier, vol. 202(C).
    9. Jones, Andrew & Nock, Destenie & Samaras, Constantine & Qiu, Yueming (Lucy) & Xing, Bo, 2023. "Climate change impacts on future residential electricity consumption and energy burden: A case study in Phoenix, Arizona," Energy Policy, Elsevier, vol. 183(C).
    10. Krese, Gorazd & Lampret, Žiga & Butala, Vincenc & Prek, Matjaž, 2018. "Determination of a Building's balance point temperature as an energy characteristic," Energy, Elsevier, vol. 165(PB), pages 1034-1049.
    11. Filippo Pavanello & Enrica Cian & Marinella Davide & Malcolm Mistry & Talita Cruz & Paula Bezerra & Dattakiran Jagu & Sebastian Renner & Roberto Schaeffer & André F. P. Lucena, 2021. "Air-conditioning and the adaptation cooling deficit in emerging economies," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    12. Kheiri, Farshad & Haberl, Jeff S. & Baltazar, Juan-Carlos, 2023. "Impact of outdoor humidity conditions on building energy performance and environmental footprint in the degree days-based climate classification," Energy, Elsevier, vol. 283(C).
    13. Pérez-Andreu, Víctor & Aparicio-Fernández, Carolina & Martínez-Ibernón, Ana & Vivancos, José-Luis, 2018. "Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate," Energy, Elsevier, vol. 165(PA), pages 63-74.
    14. Dirks, James A. & Gorrissen, Willy J. & Hathaway, John H. & Skorski, Daniel C. & Scott, Michael J. & Pulsipher, Trenton C. & Huang, Maoyi & Liu, Ying & Rice, Jennie S., 2015. "Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach," Energy, Elsevier, vol. 79(C), pages 20-32.
    15. Giacomo Falchetta & Enrica De Cian & Filippo Pavanello & Ian Sue Wing, 2024. "Inequalities in global residential cooling energy use to 2050," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    17. Imre Csáky & Tünde Kalmár & Ferend Kalmár, 2019. "Operation Testing of an Advanced Personalized Ventilation System," Energies, MDPI, vol. 12(9), pages 1-13, April.
    18. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    19. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric D. & Reyna, Janet, 2019. "Forecasting peak electricity demand for Los Angeles considering higher air temperatures due to climate change," Applied Energy, Elsevier, vol. 236(C), pages 1-9.
    20. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2987-:d:513691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.