IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v276y2023ics036054422300991x.html
   My bibliography  Save this article

Recent trends in urban electricity consumption for cooling in West and Central African countries

Author

Listed:
  • Kondi-Akara, Ghafi
  • Hingray, Benoit
  • Francois, Baptiste
  • Diedhiou, Arona

Abstract

Thanks to a new non-stationary analytical framework, we estimate the factors that explain the day-to-day and long-term variability of the per-capita electricity consumption in twelve cities of West and Central Africa, especially its sensitivity to weather. Whatever the local climate, temperature is an important driver and explains from 25% to 70% of the variability. The percentage contribution of temperature to the annual consumption is often greater than 20%. Air humidity is another important factor, especially in Sahelian cities where its seasonality is large. It explains up to 6.8% of day-to-day consumption variability in Dakar. The thermal sensitivity is significantly lower than that in OECD countries but when normalized by the base consumption, it is similar. Each additional degree of temperature produces a 3–4% increase in the base consumption in Mindelo and Dakar, 6–10% in most Sahelian and tropical cities. The percentage consumption increase induced by air humidity can be also significant: in Sahelian and some tropical cities, a 10% increase in air humidity roughly corresponds to 70% of the percentage consumption increase induced by a 1 °C increase in temperature (30–90% depending on the city). For most cities, the base consumption and the normalized weather sensitivities are significantly increasing over time, making the electricity demand behavior highly non-stationary.

Suggested Citation

  • Kondi-Akara, Ghafi & Hingray, Benoit & Francois, Baptiste & Diedhiou, Arona, 2023. "Recent trends in urban electricity consumption for cooling in West and Central African countries," Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:energy:v:276:y:2023:i:c:s036054422300991x
    DOI: 10.1016/j.energy.2023.127597
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422300991X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127597?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bessec, Marie & Fouquau, Julien, 2008. "The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach," Energy Economics, Elsevier, vol. 30(5), pages 2705-2721, September.
    2. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    3. Mideksa, Torben K. & Kallbekken, Steffen, 2010. "The impact of climate change on the electricity market: A review," Energy Policy, Elsevier, vol. 38(7), pages 3579-3585, July.
    4. Wang, Yaoping & Bielicki, Jeffrey M., 2018. "Acclimation and the response of hourly electricity loads to meteorological variables," Energy, Elsevier, vol. 142(C), pages 473-485.
    5. Hekkenberg, M. & Benders, R.M.J. & Moll, H.C. & Schoot Uiterkamp, A.J.M., 2009. "Indications for a changing electricity demand pattern: The temperature dependence of electricity demand in the Netherlands," Energy Policy, Elsevier, vol. 37(4), pages 1542-1551, April.
    6. Waite, Michael & Cohen, Elliot & Torbey, Henri & Piccirilli, Michael & Tian, Yu & Modi, Vijay, 2017. "Global trends in urban electricity demands for cooling and heating," Energy, Elsevier, vol. 127(C), pages 786-802.
    7. Hong, Tianzhen & Chang, Wen-Kuei & Lin, Hung-Wen, 2013. "A fresh look at weather impact on peak electricity demand and energy use of buildings using 30-year actual weather data," Applied Energy, Elsevier, vol. 111(C), pages 333-350.
    8. Raúl Castaño-Rosa & Roberto Barrella & Carmen Sánchez-Guevara & Ricardo Barbosa & Ioanna Kyprianou & Eleftheria Paschalidou & Nikolaos S. Thomaidis & Dusana Dokupilova & João Pedro Gouveia & József Ká, 2021. "Cooling Degree Models and Future Energy Demand in the Residential Sector. A Seven-Country Case Study," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
    9. Adeoye, Omotola & Spataru, Catalina, 2019. "Modelling and forecasting hourly electricity demand in West African countries," Applied Energy, Elsevier, vol. 242(C), pages 311-333.
    10. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    11. Ihara, T. & Genchi, Y. & Sato, T. & Yamaguchi, K. & Endo, Y., 2008. "City-block-scale sensitivity of electricity consumption to air temperature and air humidity in business districts of Tokyo, Japan," Energy, Elsevier, vol. 33(11), pages 1634-1645.
    12. Taylor, James W. & Buizza, Roberto, 2003. "Using weather ensemble predictions in electricity demand forecasting," International Journal of Forecasting, Elsevier, vol. 19(1), pages 57-70.
    13. repec:dau:papers:123456789/8180 is not listed on IDEAS
    14. Moral-Carcedo, Julian & Vicens-Otero, Jose, 2005. "Modelling the non-linear response of Spanish electricity demand to temperature variations," Energy Economics, Elsevier, vol. 27(3), pages 477-494, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moral-Carcedo, Julián & Pérez-García, Julián, 2015. "Temperature effects on firms’ electricity demand: An analysis of sectorial differences in Spain," Applied Energy, Elsevier, vol. 142(C), pages 407-425.
    2. Kamal Chapagain & Somsak Kittipiyakul, 2018. "Performance Analysis of Short-Term Electricity Demand with Atmospheric Variables," Energies, MDPI, vol. 11(4), pages 1-34, April.
    3. Santágata, Daniela M. & Castesana, Paula & Rössler, Cristina E. & Gómez, Darío R., 2017. "Extreme temperature events affecting the electricity distribution system of the metropolitan area of Buenos Aires (1971–2013)," Energy Policy, Elsevier, vol. 106(C), pages 404-414.
    4. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    5. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    6. Wang, Yaoping & Bielicki, Jeffrey M., 2018. "Acclimation and the response of hourly electricity loads to meteorological variables," Energy, Elsevier, vol. 142(C), pages 473-485.
    7. Moral-Carcedo, Julián & Pérez-García, Julián, 2019. "Time of day effects of temperature and daylight on short term electricity load," Energy, Elsevier, vol. 174(C), pages 169-183.
    8. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    9. Richard Tol, 2013. "The economic impact of climate change in the 20th and 21st centuries," Climatic Change, Springer, vol. 117(4), pages 795-808, April.
    10. Tamara Sofía Propato & Diego Abelleyra & María Semmartin & Santiago R. Verón, 2021. "Differential sensitivities of electricity consumption to global warming across regions of Argentina," Climatic Change, Springer, vol. 166(1), pages 1-18, May.
    11. Blázquez, Leticia & Boogen, Nina & Filippini, Massimo, 2013. "Residential electricity demand in Spain: New empirical evidence using aggregate data," Energy Economics, Elsevier, vol. 36(C), pages 648-657.
    12. Matthew Ranson & Lauren Morris & Alex Kats-Rubin, 2014. "Climate Change and Space Heating Energy Demand: A Review of the Literature," NCEE Working Paper Series 201407, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Dec 2014.
    13. Gallo Cassarino, Tiziano & Sharp, Ed & Barrett, Mark, 2018. "The impact of social and weather drivers on the historical electricity demand in Europe," Applied Energy, Elsevier, vol. 229(C), pages 176-185.
    14. Khan, Muhammad Arshad & Abbas, Faisal, 2016. "The dynamics of electricity demand in Pakistan: A panel cointegration analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1159-1178.
    15. Blazquez Leticia & Nina Boogen & Massimo Filippini, 2012. "Residential electricity demand for Spain: new empirical evidence using aggregated data," CEPE Working paper series 12-82, CEPE Center for Energy Policy and Economics, ETH Zurich.
    16. Tong Wu & Zhe You & Mengqi Gong & Jinhua Cheng, 2021. "Star Wars? Space Weather and Electricity Market: Evidence from China," Energies, MDPI, vol. 14(17), pages 1-14, August.
    17. Du, Kerui & Yu, Ying & Wei, Chu, 2020. "Climatic impact on China's residential electricity consumption: Does the income level matter?," China Economic Review, Elsevier, vol. 63(C).
    18. Hekkenberg, M. & Moll, H.C. & Uiterkamp, A.J.M. Schoot, 2009. "Dynamic temperature dependence patterns in future energy demand models in the context of climate change," Energy, Elsevier, vol. 34(11), pages 1797-1806.
    19. Fan, Jing-Li & Hu, Jia-Wei & Zhang, Xian, 2019. "Impacts of climate change on electricity demand in China: An empirical estimation based on panel data," Energy, Elsevier, vol. 170(C), pages 880-888.
    20. Jose M. Garrido-Perez & David Barriopedro & Ricardo García-Herrera & Carlos Ordóñez, 2021. "Impact of climate change on Spanish electricity demand," Climatic Change, Springer, vol. 165(3), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:276:y:2023:i:c:s036054422300991x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.