IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01695171.html
   My bibliography  Save this paper

The cost of adapting to climate change: evidence from the US residential sector

Author

Listed:
  • François Cohen

    (CERNA i3 - Centre d'économie industrielle i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique)

  • Matthieu Glachant

    (CERNA i3 - Centre d'économie industrielle i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique)

  • Magnus Söderberg

    (NIVA - Norwegian Institute for Water Research)

Abstract

Using household-level data from the American Housing Survey, this paper assesses the cost of adapting housing to temperature increases. We account for both energy use adjustments and capital adjustments through investments in weatherization and heating and cooling equipment. Our best estimate of the present discounted value of the cost for adapting to the A2 « business-as-usual » climate scenario by the end of the century is $5,600 per housing unit, including both energy and investment costs. A more intense use of air conditioners will be compensated for by a reduction in heating need, leading to a shift from gas to electricity consumption.

Suggested Citation

  • François Cohen & Matthieu Glachant & Magnus Söderberg, 2017. "The cost of adapting to climate change: evidence from the US residential sector," Working Papers hal-01695171, HAL.
  • Handle: RePEc:hal:wpaper:hal-01695171
    Note: View the original document on HAL open archive server: https://minesparis-psl.hal.science/hal-01695171v1
    as

    Download full text from publisher

    File URL: https://minesparis-psl.hal.science/hal-01695171v1/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Olivier Deschênes & Michael Greenstone, 2011. "Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 152-185, October.
    2. David Roodman, 2009. "How to do xtabond2: An introduction to difference and system GMM in Stata," Stata Journal, StataCorp LP, vol. 9(1), pages 86-136, March.
    3. Anderson, Soren T. & Kellogg, Ryan & Sallee, James M., 2013. "What do consumers believe about future gasoline prices?," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 383-403.
    4. Mansur, Erin T. & Mendelsohn, Robert & Morrison, Wendy, 2008. "Climate change adaptation: A study of fuel choice and consumption in the US energy sector," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 175-193, March.
    5. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    6. Raven Molloy & Christopher L. Smith & Abigail Wozniak, 2011. "Internal Migration in the United States," Journal of Economic Perspectives, American Economic Association, vol. 25(3), pages 173-196, Summer.
    7. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    8. Maximilian Auffhammer & Anin Aroonruengsawat, 2011. "Simulating the impacts of climate change, prices and population on California’s residential electricity consumption," Climatic Change, Springer, vol. 109(1), pages 191-210, December.
    9. Auffhammer, Maximilian & Mansur, Erin T., 2014. "Measuring climatic impacts on energy consumption: A review of the empirical literature," Energy Economics, Elsevier, vol. 46(C), pages 522-530.
    10. Gelain, Paolo & Lansing, Kevin J., 2014. "House prices, expectations, and time-varying fundamentals," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 3-25.
    11. Rapson, David, 2014. "Durable goods and long-run electricity demand: Evidence from air conditioner purchase behavior," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 141-160.
    12. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    13. Helms, Andrew C., 2003. "Understanding gentrification: an empirical analysis of the determinants of urban housing renovation," Journal of Urban Economics, Elsevier, vol. 54(3), pages 474-498, November.
    14. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    15. Sailor, D.J & Pavlova, A.A, 2003. "Air conditioning market saturation and long-term response of residential cooling energy demand to climate change," Energy, Elsevier, vol. 28(9), pages 941-951.
    16. Mark E. Doms & Timothy Dunne, 1998. "Capital Adjustment Patterns in Manufacturing Plants," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 1(2), pages 409-429, April.
    17. Harding, John P. & Rosenthal, Stuart S. & Sirmans, C.F., 2007. "Depreciation of housing capital, maintenance, and house price inflation: Estimates from a repeat sales model," Journal of Urban Economics, Elsevier, vol. 61(2), pages 193-217, March.
    18. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    19. Gunnar Eskeland & Torben Mideksa, 2010. "Electricity demand in a changing climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(8), pages 877-897, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrica De Cian & Filippo Pavanello & Teresa Randazzo & Malcolm Mistry & Marinella Davide, 2019. "Does climate influence households' thermal comfort decisions?," Working Papers 2019:02, Department of Economics, University of Venice "Ca' Foscari".

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sam Fankhauser, 2017. "Adaptation to Climate Change," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 209-230, October.
    2. Enrica De Cian & Filippo Pavanello & Teresa Randazzo & Malcolm Mistry & Marinella Davide, 2019. "Does climate influence households' thermal comfort decisions?," Working Papers 2019:02, Department of Economics, University of Venice "Ca' Foscari".
    3. Randazzo, Teresa & De Cian, Enrica & Mistry, Malcolm N., 2020. "Air conditioning and electricity expenditure: The role of climate in temperate countries," Economic Modelling, Elsevier, vol. 90(C), pages 273-287.
    4. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    5. Lehr, Jakob & Rehdanz, Katrin, 2024. "The effect of temperature on energy related CO2 emissions and economic performance in German industry," Energy Economics, Elsevier, vol. 138(C).
    6. Enrica Cian & Ian Sue Wing, 2019. "Global Energy Consumption in a Warming Climate," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 365-410, February.
    7. Auffhammer, Maximilian & Mansur, Erin T., 2014. "Measuring climatic impacts on energy consumption: A review of the empirical literature," Energy Economics, Elsevier, vol. 46(C), pages 522-530.
    8. Marilyn Brown & Matt Cox & Ben Staver & Paul Baer, 2016. "Modeling climate-driven changes in U.S. buildings energy demand," Climatic Change, Springer, vol. 134(1), pages 29-44, January.
    9. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    10. Harish, Santosh & Singh, Nishmeet & Tongia, Rahul, 2020. "Impact of temperature on electricity demand: Evidence from Delhi and Indian states," Energy Policy, Elsevier, vol. 140(C).
    11. Daniel C. Steinberg & Bryan K. Mignone & Jordan Macknick & Yinong Sun & Kelly Eurek & Andrew Badger & Ben Livneh & Kristen Averyt, 2020. "Decomposing supply-side and demand-side impacts of climate change on the US electricity system through 2050," Climatic Change, Springer, vol. 158(2), pages 125-139, January.
    12. Auffhammer, Maximilian, 2022. "Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    13. Marilyn A. Brown & Matt Cox & Ben Staver & Paul Baer, 2016. "Modeling climate-driven changes in U.S. buildings energy demand," Climatic Change, Springer, vol. 134(1), pages 29-44, January.
    14. Chang, Jun-Jie & Mi, Zhifu & Wei, Yi-Ming, 2023. "Temperature and GDP: A review of climate econometrics analysis," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 383-392.
    15. Zhang, Mingyang & Zhang, Kaiwen & Hu, Wuyang & Zhu, Bangzhu & Wang, Ping & Wei, Yi-Ming, 2020. "Exploring the climatic impacts on residential electricity consumption in Jiangsu, China," Energy Policy, Elsevier, vol. 140(C).
    16. Yongping Sun & Xin Zou & Xunpeng Shi & Ping Zhang, 2019. "The economic impact of climate risks in China: evidence from 47-sector panel data, 2000–2014," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 289-308, January.
    17. Li, Jianglong & Yang, Lisha & Long, Houyin, 2018. "Climatic impacts on energy consumption: Intensive and extensive margins," Energy Economics, Elsevier, vol. 71(C), pages 332-343.
    18. Hsing-Hsiang Huang & Michael R. Moore, 2018. "Farming under Weather Risk: Adaptation, Moral Hazard, and Selection on Moral Hazard," NBER Chapters, in: Agricultural Productivity and Producer Behavior, pages 77-124, National Bureau of Economic Research, Inc.
    19. Joshua Graff Zivin & Solomon M. Hsiang & Matthew Neidell, 2018. "Temperature and Human Capital in the Short and Long Run," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 77-105.
    20. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01695171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.