IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2723-d364324.html
   My bibliography  Save this article

Feasibility Study of a Centralised Electrically Driven Air Source Heat Pump Water Heater to Face Energy Poverty in Block Dwellings in Madrid (Spain)

Author

Listed:
  • Roberto Barrella

    (ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain)

  • Irene Priego

    (ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain)

  • José Ignacio Linares

    (ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain)

  • Eva Arenas

    (ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain)

  • José Carlos Romero

    (ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain)

  • Efraim Centeno

    (ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain)

Abstract

Energy poverty can be defined as the inability to pay the bills that are required for maintaining the comfort conditions (usually in winter) in dwellings. The use of energy efficient systems is one way forward to mitigate this problem, with one option being the electrically driven air source heat pump water heater. This paper assesses the performance of a centralised heat pump (200 kW of heating capacity) to meet the space heating demand of block dwellings in Madrid (tier four out of five in winter severity in Spain). Two models have been developed to obtain the following variables: the hourly thermal energy demand and the off-design heat pump performance. The proposed heat pump is driven by a motor with variable rotational speed to modulate the heating capacity in an efficient way. A back-up system is also considered to meet the peak demand. A levelised cost of heating of 92.22 €/MWh is obtained for a middle-level energy efficiency in housing (class E, close to D). Moreover, the following energy-environmental parameters have been achieved: more than 74% share of renewable energy in primary energy and 131.7 g CO 2 avoided per kWh met. A reduction of 60% in the heating cost per dwelling is obtained if an energy retrofit is carried out, improving the energy performance class from E to C. These results prove that the proposed technology is among the most promising measures for addressing energy poverty in vulnerable households.

Suggested Citation

  • Roberto Barrella & Irene Priego & José Ignacio Linares & Eva Arenas & José Carlos Romero & Efraim Centeno, 2020. "Feasibility Study of a Centralised Electrically Driven Air Source Heat Pump Water Heater to Face Energy Poverty in Block Dwellings in Madrid (Spain)," Energies, MDPI, vol. 13(11), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2723-:d:364324
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2723/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2723/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lohani, S.P. & Schmidt, D., 2010. "Comparison of energy and exergy analysis of fossil plant, ground and air source heat pump building heating system," Renewable Energy, Elsevier, vol. 35(6), pages 1275-1282.
    2. Büyükalaca, Orhan & Bulut, Hüsamettin & YIlmaz, Tuncay, 2001. "Analysis of variable-base heating and cooling degree-days for Turkey," Applied Energy, Elsevier, vol. 69(4), pages 269-283, August.
    3. Fabbri, Kristian, 2015. "Building and fuel poverty, an index to measure fuel poverty: An Italian case study," Energy, Elsevier, vol. 89(C), pages 244-258.
    4. Powell, Kody M. & Sriprasad, Akshay & Cole, Wesley J. & Edgar, Thomas F., 2014. "Heating, cooling, and electrical load forecasting for a large-scale district energy system," Energy, Elsevier, vol. 74(C), pages 877-885.
    5. Uris, María & Linares, José Ignacio & Arenas, Eva, 2015. "Size optimization of a biomass-fired cogeneration plant CHP/CCHP (Combined heat and power/Combined heat, cooling and power) based on Organic Rankine Cycle for a district network in Spain," Energy, Elsevier, vol. 88(C), pages 935-945.
    6. Romero, José Carlos & Linares, Pedro & López, Xiral, 2018. "The policy implications of energy poverty indicators," Energy Policy, Elsevier, vol. 115(C), pages 98-108.
    7. Gadd, Henrik & Werner, Sven, 2013. "Heat load patterns in district heating substations," Applied Energy, Elsevier, vol. 108(C), pages 176-183.
    8. Audrey Dobbins & Francesco Fuso Nerini & Paul Deane & Steve Pye, 2019. "Strengthening the EU response to energy poverty," Nature Energy, Nature, vol. 4(1), pages 2-5, January.
    9. Ibrahim, Oussama & Fardoun, Farouk & Younes, Rafic & Louahlia-Gualous, Hasna, 2014. "Air source heat pump water heater: Dynamic modeling, optimal energy management and mini-tubes condensers," Energy, Elsevier, vol. 64(C), pages 1102-1116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sam Hamels, 2021. "CO 2 Intensities and Primary Energy Factors in the Future European Electricity System," Energies, MDPI, vol. 14(8), pages 1-30, April.
    2. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Raúl Castaño-Rosa & Roberto Barrella & Carmen Sánchez-Guevara & Ricardo Barbosa & Ioanna Kyprianou & Eleftheria Paschalidou & Nikolaos S. Thomaidis & Dusana Dokupilova & João Pedro Gouveia & József Ká, 2021. "Cooling Degree Models and Future Energy Demand in the Residential Sector. A Seven-Country Case Study," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
    4. Ivan CK Tam & Brian Agnew, 2020. "Thermal Systems—An Overview," Energies, MDPI, vol. 14(1), pages 1-3, December.
    5. Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uris, María & Linares, José Ignacio & Arenas, Eva, 2015. "Size optimization of a biomass-fired cogeneration plant CHP/CCHP (Combined heat and power/Combined heat, cooling and power) based on Organic Rankine Cycle for a district network in Spain," Energy, Elsevier, vol. 88(C), pages 935-945.
    2. Leticia dos Santos Benso Maciel & Benedito Donizeti Bonatto & Hector Arango & Lucas Gustavo Arango, 2020. "Evaluating Public Policies for Fair Social Tariffs of Electricity in Brazil by Using an Economic Market Model," Energies, MDPI, vol. 13(18), pages 1-20, September.
    3. Hortay, Olivér & Kökény, László & Stefkovics, Ádám, 2021. "A szubjektív energiaszegénység mérésének problémái Magyarországon [Problems with measuring subjective energy poverty in Hungary]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 753-772.
    4. Grazini, Chiara, 2024. "Energy poverty as capacity deprivation: A study of social housing using the partially ordered set," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    5. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    6. Scarpellini, Sabina & Alexia Sanz Hernández, M. & Moneva, José M. & Portillo-Tarragona, Pilar & Rodríguez, María Esther López, 2019. "Measurement of spatial socioeconomic impact of energy poverty," Energy Policy, Elsevier, vol. 124(C), pages 320-331.
    7. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & D'Amico, Antonino, 2019. "Results of a literature review on methods for estimating buildings energy demand at district level," Energy, Elsevier, vol. 175(C), pages 1130-1137.
    8. Keyu Chen & Chao Feng, 2022. "Linking Housing Conditions and Energy Poverty: From a Perspective of Household Energy Self-Restriction," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    9. Betto, Frida & Garengo, Patrizia & Lorenzoni, Arturo, 2020. "A new measure of Italian hidden energy poverty," Energy Policy, Elsevier, vol. 138(C).
    10. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
    11. Bezerra, Paula & Cruz, Talita & Mazzone, Antonella & Lucena, André F.P. & De Cian, Enrica & Schaeffer, Roberto, 2022. "The multidimensionality of energy poverty in Brazil: A historical analysis," Energy Policy, Elsevier, vol. 171(C).
    12. Andrea Menapace & Simone Santopietro & Rudy Gargano & Maurizio Righetti, 2021. "Stochastic Generation of District Heat Load," Energies, MDPI, vol. 14(17), pages 1-17, August.
    13. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    14. Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.
    15. Li, Yongcai & Li, Wuyan & Liu, Zongsheng & Lu, Jun & Zeng, Liyue & Yang, Lulu & Xie, Ling, 2017. "Theoretical and numerical study on performance of the air-source heat pump system in Tibet," Renewable Energy, Elsevier, vol. 114(PB), pages 489-501.
    16. Ucar, Aynur & Balo, Figen, 2009. "Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey," Applied Energy, Elsevier, vol. 86(5), pages 730-736, May.
    17. Dorothée Charlier & Sondès Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, , vol. 40(2), pages 101-138, March.
    18. Camboni, Riccardo & Corsini, Alberto & Miniaci, Raffaele & Valbonesi, Paola, 2021. "Mapping fuel poverty risk at the municipal level. A small-scale analysis of Italian Energy Performance Certificate, census and survey data," Energy Policy, Elsevier, vol. 155(C).
    19. Sukjoon Oh & John F. Gardner, 2022. "Large Scale Energy Signature Analysis: Tools for Utility Managers and Planners," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    20. Roberto Barrella & José Carlos Romero & Lucía Mariño, 2022. "Proposing a Novel Minimum Income Standard Approach to Energy Poverty Assessment: A European Case Study," Sustainability, MDPI, vol. 14(23), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2723-:d:364324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.