IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i7p1115-d867518.html
   My bibliography  Save this article

Evaluating Ecosystem Services and Trade-Offs Based on Land-Use Simulation: A Case Study in the Farming–Pastoral Ecotone of Northern China

Author

Listed:
  • Shuting Bai

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jiuchun Yang

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Yubo Zhang

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    College of Earth Sciences, Jilin University, Changchun 130021, China)

  • Fengqin Yan

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Lingxue Yu

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Shuwen Zhang

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

Abstract

Evaluating the impacts of land-use change (LUC) on ecosystem services (ESs) is necessary for regional sustainable development, especially for the farming–pastoral ecotone of northern China (FPENC), an ecologically sensitive and fragile region. This study aimed to assess the impacts of LUC on the ESs and provide valuable information for regional planning and management in the FPENC. To accomplish this, we assessed LUC in the FPENC from 2010 to 2020 and simulated land-use patterns in 2030 under three plausible scenarios: the business as usual scenario (BAUS), economic development scenario (EDS), and ecological protection scenario (EPS). Then, we quantified five ESs (including crop production, water yield, soil retention, water purification, and carbon storage) for 2020–2030 and analyzed the trade-offs and synergies among ESs in all scenarios. The results show that FPENC experienced expanding farming land and built-up land throughout 2010–2020. Under the BAUS and EDS from 2000 to 2030, especially EDS, the increase in farming land and built-up land will continue. As a result, crop production and water yield will increase, while soil retention, water purification, and carbon storage will decrease. In contrast, EPS will increase soil retention, water purification, and carbon storage at the cost of a decline in crop production and water yield. These results can provide effective reference information for future regional planning and management in the farming–pastoral ecotone.

Suggested Citation

  • Shuting Bai & Jiuchun Yang & Yubo Zhang & Fengqin Yan & Lingxue Yu & Shuwen Zhang, 2022. "Evaluating Ecosystem Services and Trade-Offs Based on Land-Use Simulation: A Case Study in the Farming–Pastoral Ecotone of Northern China," Land, MDPI, vol. 11(7), pages 1-17, July.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:7:p:1115-:d:867518
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/7/1115/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/7/1115/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhiqiang Wang & Jingyi Jiang & Yongfeng Liao & Lan Deng, 2015. "Risk assessment of maize drought hazard in the middle region of farming-pastoral ecotone in Northern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1515-1534, April.
    2. Xinli Ke & Liye Wang & Yanchun Ma & Kunpeng Pu & Ting Zhou & Bangyong Xiao & Jiahe Wang, 2019. "Impacts of Strict Cropland Protection on Water Yield: A Case Study of Wuhan, China," Sustainability, MDPI, vol. 11(1), pages 1-16, January.
    3. Xia Li & Guangzhao Chen & Xiaoping Liu & Xun Liang & Shaojian Wang & Yimin Chen & Fengsong Pei & Xiaocong Xu, 2017. "A New Global Land-Use and Land-Cover Change Product at a 1-km Resolution for 2010 to 2100 Based on Human–Environment Interactions," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(5), pages 1040-1059, September.
    4. Kusi, Kwadwo Kyenkyehene & Khattabi, Abdellatif & Mhammdi, Nadia & Lahssini, Said, 2020. "Prospective evaluation of the impact of land use change on ecosystem services in the Ourika watershed, Morocco," Land Use Policy, Elsevier, vol. 97(C).
    5. Sharma, Sunil K. & Baral, Himlal & Laumonier, Yves & Okarda, Beni & Komarudin, Heru & Purnomo, Herry & Pacheco, Pablo, 2019. "Ecosystem services under future oil palm expansion scenarios in West Kalimantan, Indonesia," Ecosystem Services, Elsevier, vol. 39(C).
    6. Wu, Ye & Tao, Yu & Yang, Guishan & Ou, Weixin & Pueppke, Steven & Sun, Xiao & Chen, Gongtai & Tao, Qin, 2019. "Impact of land use change on multiple ecosystem services in the rapidly urbanizing Kunshan City of China: Past trajectories and future projections," Land Use Policy, Elsevier, vol. 85(C), pages 419-427.
    7. Jamroon Srichaichana & Yongyut Trisurat & Suwit Ongsomwang, 2019. "Land Use and Land Cover Scenarios for Optimum Water Yield and Sediment Retention Ecosystem Services in Klong U-Tapao Watershed, Songkhla, Thailand," Sustainability, MDPI, vol. 11(10), pages 1-22, May.
    8. Guangdong Li & Chuanglin Fang & Yingjie Li & Zhenbo Wang & Siao Sun & Sanwei He & Wei Qi & Chao Bao & Haitao Ma & Yupeng Fan & Yuxue Feng & Xiaoping Liu, 2022. "Global impacts of future urban expansion on terrestrial vertebrate diversity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Yuejuan Yang & Kun Wang & Di Liu & Xinquan Zhao & Jiangwen Fan & Jinsheng Li & Xiajie Zhai & Cong Zhang & Ruyi Zhan, 2019. "Spatiotemporal Variation Characteristics of Ecosystem Service Losses in the Agro-Pastoral Ecotone of Northern China," IJERPH, MDPI, vol. 16(7), pages 1-23, April.
    10. Qian Li & Xuefeng Zhang & Qingfu Liu & Yang Liu & Yong Ding & Qing Zhang, 2017. "Impact of Land Use Intensity on Ecosystem Services: An Example from the Agro-Pastoral Ecotone of Central Inner Mongolia," Sustainability, MDPI, vol. 9(6), pages 1-11, June.
    11. Shi, Wenjiao & Liu, Yiting & Shi, Xiaoli, 2018. "Contributions of climate change to the boundary shifts in the farming-pastoral ecotone in northern China since 1970," Agricultural Systems, Elsevier, vol. 161(C), pages 16-27.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linye Zhu & Mingming Shi & Deqin Fan & Kun Tu & Wenbin Sun, 2023. "Analysis of Changes in Vegetation Carbon Storage and Net Primary Productivity as Influenced by Land-Cover Change in Inner Mongolia, China," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    2. Penny, Jessica & Ordens, Carlos M. & Barnett, Steve & Djordjević, Slobodan & Chen, Albert S., 2023. "Vineyards, vegetables or business-as-usual? Stakeholder-informed land use change modelling to predict the future of a groundwater-dependent prime-wine region under climate change," Agricultural Water Management, Elsevier, vol. 287(C).
    3. Zuzheng Li & Xiaoqin Cheng & Hairong Han, 2020. "Analyzing Land-Use Change Scenarios for Ecosystem Services and their Trade-Offs in the Ecological Conservation Area in Beijing, China," IJERPH, MDPI, vol. 17(22), pages 1-20, November.
    4. Minerva Singh & Jessamine Badcock-Scruton & C. Matilda Collins, 2021. "What Will Remain? Predicting the Representation in Protected Areas of Suitable Habitat for Endangered Tropical Avifauna in Borneo under a Combined Climate- and Land-Use Change Scenario," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    5. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Hengrui Zhang & Jianing Zhang & Zhuozhuo Lv & Linjie Yao & Ning Zhang & Qing Zhang, 2023. "Spatio-Temporal Assessment of Landscape Ecological Risk and Associated Drivers: A Case Study of the Yellow River Basin in Inner Mongolia," Land, MDPI, vol. 12(6), pages 1-15, May.
    7. Yang Zou & Dehua Mao, 2022. "Simulation of Freshwater Ecosystem Service Flows under Land-Use Change: A Case Study of Lianshui River Basin, China," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    8. Nausheen Masood & Alessio Russo, 2023. "Community Perception of Brownfield Regeneration through Urban Rewilding," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    9. Yudha Kristanto & Suria Tarigan & Tania June & Enni Dwi Wahjunie & Bambang Sulistyantara, 2022. "Water Regulation Ecosystem Services of Multifunctional Landscape Dominated by Monoculture Plantations," Land, MDPI, vol. 11(6), pages 1-20, May.
    10. Jian, Yuqing & Liu, Zhengjia & Gong, Jianzhou, 2022. "Response of landscape dynamics to socio-economic development and biophysical setting across the farming-pastoral ecotone of northern China and its implications for regional sustainable land management," Land Use Policy, Elsevier, vol. 122(C).
    11. Karen T. Lourdes & Chris N. Gibbins & Perrine Hamel & Ruzana Sanusi & Badrul Azhar & Alex M. Lechner, 2021. "A Review of Urban Ecosystem Services Research in Southeast Asia," Land, MDPI, vol. 10(1), pages 1-21, January.
    12. Yaotao Xu & Peng Li & Jinjin Pan & Yi Zhang & Xiaohu Dang & Xiaoshu Cao & Junfang Cui & Zhi Yang, 2022. "Eco-Environmental Effects and Spatial Heterogeneity of “Production-Ecology-Living” Land Use Transformation: A Case Study for Ningxia, China," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    13. Chuanrong Zhang & Xinba Li, 2022. "Land Use and Land Cover Mapping in the Era of Big Data," Land, MDPI, vol. 11(10), pages 1-22, September.
    14. Leila Dal Moro & Laércio Stolfo Maculan & Dieisson Pivoto & Grace Tibério Cardoso & Diana Pinto & Bashir Adelodun & Brian William Bodah & M. Santosh & Marluse Guedes Bortoluzzi & Elisiane Branco & Alc, 2022. "Geospatial Analysis with Landsat Series and Sentinel-3B OLCI Satellites to Assess Changes in Land Use and Water Quality over Time in Brazil," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    15. Wang, Zhiqiang & Ye, Li & Jiang, Jingyi & Fan, Yida & Zhang, Xiaoran, 2022. "Review of application of EPIC crop growth model," Ecological Modelling, Elsevier, vol. 467(C).
    16. Wei Shi & Fuwei Qiao & Liang Zhou, 2021. "Identification of Ecological Risk Zoning on Qinghai-Tibet Plateau from the Perspective of Ecosystem Service Supply and Demand," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    17. John Nyandansobi Simon & Narissara Nuthammachot & Teerawet Titseesang & Kingsley Ezechukwu Okpara & Kuaanan Techato, 2021. "Spatial Assessment of Para Rubber ( Hevea brasiliensis ) above Ground Biomass Potentials in Songkhla Province, Southern Thailand," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    18. Wenbo Cai & Wei Jiang & Hongyu Du & Ruishan Chen & Yongli Cai, 2021. "Assessing Ecosystem Services Supply-Demand (Mis)Matches for Differential City Management in the Yangtze River Delta Urban Agglomeration," IJERPH, MDPI, vol. 18(15), pages 1-22, July.
    19. Kikuko Shoyama, 2021. "Assessment of Land-Use Scenarios at a National Scale Using Intensity Analysis and Figure of Merit Components," Land, MDPI, vol. 10(4), pages 1-13, April.
    20. Tang, Jianzhao & Xiao, Dengpan & Wang, Jing & Fang, Quanxiao & Zhang, Jun & Bai, Huizi, 2021. "Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China," Agricultural Water Management, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:7:p:1115-:d:867518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.