IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v22y2017i6d10.1007_s11027-016-9707-y.html
   My bibliography  Save this article

From site-level to regional adaptation planning for tropical commodities: cocoa in West Africa

Author

Listed:
  • Götz Schroth
  • Peter Läderach

    (International Center for Tropical Agriculture (CIAT))

  • Armando Isaac Martinez-Valle

    (International Center for Tropical Agriculture (CIAT))

  • Christian Bunn

    (International Center for Tropical Agriculture (CIAT)
    Humboldt University)

Abstract

The production of tropical agricultural commodities, such as cocoa (Theobroma cacao) and coffee (Coffea spp.), the countries and communities engaged in it, and the industries dependent on these commodities, are vulnerable to climate change. This is especially so where a large percentage of the global supply is grown in a single geographical region. Fortunately, there is often considerable spatial heterogeneity in the vulnerability to climate change within affected regions, implying that local production losses could be compensated through intensification and expansion of production elsewhere. However, this requires that site-level actions are integrated into a regional approach to climate change adaptation. We discuss here such a regional approach for cocoa in West Africa, where 70 % of global cocoa supply originates. On the basis of a statistical model of relative climatic suitability calibrated on West African cocoa farming areas and average climate projections for the 2030s and 2050s of, respectively, 15 and 19 Global Circulation Models, we divide the region into three adaptation zones: (i) a little affected zone permitting intensification and/or expansion of cocoa farming; (ii) a moderately affected zone requiring diversification and agronomic adjustments of farming practices; and (iii) a severely affected zone with need for progressive crop change. We argue that for tropical agricultural commodities, larger-scale adaptation planning that attempts to balance production trends across countries and regions could help reduce negative impacts of climate change on regional economies and global commodity supplies, despite the institutional challenges that this integration may pose.

Suggested Citation

  • Götz Schroth & Peter Läderach & Armando Isaac Martinez-Valle & Christian Bunn, 2017. "From site-level to regional adaptation planning for tropical commodities: cocoa in West Africa," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 903-927, August.
  • Handle: RePEc:spr:masfgc:v:22:y:2017:i:6:d:10.1007_s11027-016-9707-y
    DOI: 10.1007/s11027-016-9707-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-016-9707-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-016-9707-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Bunn & Peter Läderach & Oriana Ovalle Rivera & Dieter Kirschke, 2015. "A bitter cup: climate change profile of global production of Arabica and Robusta coffee," Climatic Change, Springer, vol. 129(1), pages 89-101, March.
    2. Luciana L Porfirio & Rebecca M B Harris & Edward C Lefroy & Sonia Hugh & Susan F Gould & Greg Lee & Nathaniel L Bindoff & Brendan Mackey, 2014. "Improving the Use of Species Distribution Models in Conservation Planning and Management under Climate Change," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-21, November.
    3. E. Eyshi Rezaei & T. Gaiser & S. Siebert & F. Ewert, 2015. "Adaptation of crop production to climate change by crop substitution," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1155-1174, October.
    4. Jalloh, Abdulai & Nelson, Gerald C. & Thomas, Timothy S. & Zougmoré, Robert & Roy-Macauley, Harold, 2013. "West african agriculture and climate change: A comprehensive analysis:," Issue briefs 75, International Food Policy Research Institute (IFPRI).
    5. P. Läderach & A. Martinez-Valle & G. Schroth & N. Castro, 2013. "Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Côte d’Ivoire," Climatic Change, Springer, vol. 119(3), pages 841-854, August.
    6. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    7. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).
    2. Hashmiu, Ishmael & Agbenyega, Olivia & Dawoe, Evans, 2022. "Determinants of crop choice decisions under risk: A case study on the revival of cocoa farming in the Forest-Savannah transition zone of Ghana," Land Use Policy, Elsevier, vol. 114(C).
    3. Amfo, Bismark & Ali, Ernest Baba, 2020. "Climate change coping and adaptation strategies: How do cocoa farmers in Ghana diversify farm income?," Forest Policy and Economics, Elsevier, vol. 119(C).
    4. Amfo, Bismark & Ali, Ernest Baba & Atinga, David, 2021. "Climate change, soil water conservation, and productivity: Evidence from cocoa farmers in Ghana," Agricultural Systems, Elsevier, vol. 191(C).
    5. Sassen, Marieke & van Soesbergen, Arnout & Arnell, Andrew P. & Scott, Emma, 2022. "Patterns of (future) environmental risks from cocoa expansion and intensification in West Africa call for context specific responses," Land Use Policy, Elsevier, vol. 119(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Y. F. Verhage & Niels P. R. Anten & Paulo C. Sentelhas, 2017. "Carbon dioxide fertilization offsets negative impacts of climate change on Arabica coffee yield in Brazil," Climatic Change, Springer, vol. 144(4), pages 671-685, October.
    2. Minerva Singh & Jessamine Badcock-Scruton & C. Matilda Collins, 2021. "What Will Remain? Predicting the Representation in Protected Areas of Suitable Habitat for Endangered Tropical Avifauna in Borneo under a Combined Climate- and Land-Use Change Scenario," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    3. Rahn, Eric & Vaast, Philippe & Läderach, Peter & van Asten, Piet & Jassogne, Laurence & Ghazoul, Jaboury, 2018. "Exploring adaptation strategies of coffee production to climate change using a process-based model," Ecological Modelling, Elsevier, vol. 371(C), pages 76-89.
    4. Peter Läderach & Julian Ramirez–Villegas & Carlos Navarro-Racines & Carlos Zelaya & Armando Martinez–Valle & Andy Jarvis, 2017. "Climate change adaptation of coffee production in space and time," Climatic Change, Springer, vol. 141(1), pages 47-62, March.
    5. Carlos Mestanza-Ramón & Robinson J. Herrera Feijoo & Cristhian Chicaiza-Ortiz & Isabel Domínguez Gaibor & Rubén G. Mateo, 2021. "Estimation of Current and Future Suitable Areas for Tapirus pinchaque in Ecuador," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
    6. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    7. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    8. Wiltshire, Kathryn H & Tanner, Jason E, 2020. "Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species," Ecological Modelling, Elsevier, vol. 429(C).
    9. Martha Swamila & Damas Philip & Adam Meshack Akyoo & Julius Manda & Lutengano Mwinuka & Philip J. Smethurst & Stefan Sieber & Anthony Anderson Kimaro, 2021. "Profitability of Gliricidia-Maize System in Selected Dryland Areas of Dodoma Region, Tanzania," Sustainability, MDPI, vol. 14(1), pages 1-13, December.
    10. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    11. Wongsathit Wongloet & Prach Kongthong & Aingorn Chaiyes & Worapong Singchat & Warong Suksavate & Nattakan Ariyaraphong & Thitipong Panthum & Artem Lisachov & Kitipong Jaisamut & Jumaporn Sonongbua & T, 2023. "Genetic Monitoring of the Last Captive Population of Greater Mouse-Deer on the Thai Mainland and Prediction of Habitat Suitability before Reintroduction," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    12. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    13. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    14. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    15. Gong, Ziqian & Baker, Justin S. & Wade, Christopher M. & Havlík, Petr, 2024. "Irrigation intensification in U.S. agriculture under climate change – an adaptation mechanism or trade-induced response?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343581, Agricultural and Applied Economics Association.
    16. Inês Silva & Matthew Crane & Pongthep Suwanwaree & Colin Strine & Matt Goode, 2018. "Using dynamic Brownian Bridge Movement Models to identify home range size and movement patterns in king cobras," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-20, September.
    17. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    18. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    19. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    20. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:22:y:2017:i:6:d:10.1007_s11027-016-9707-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.