IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2524-d506298.html
   My bibliography  Save this article

Chilling and Heat Accumulation of Fruit and Nut Trees and Flower Bud Vulnerability to Early Spring Low Temperatures in New Mexico: Meteorological Approach

Author

Listed:
  • Koffi Djaman

    (Department of Plant and Environmental Sciences, Agricultural Science Center at Farmington, New Mexico State University, P.O. Box 1018, Farmington, NM 87499, USA)

  • Komlan Koudahe

    (Biological and Agricultural Engineering Department, Kansas State University, 1016 Seaton Hall 920 N. 17th St., Manhattan, KS 66506, USA)

  • Murali Darapuneni

    (Department of Plant and Environmental Science, Agricultural Science Center at Tucumcari, New Mexico State University, Tucumcari, NM 88401, USA)

  • Suat Irmak

    (Biological Systems Engineering Department, University of Nebraska-Lincoln, 239 L.W. Chase Hall, P.O. Box 830726, Lincoln, NE 68583, USA)

Abstract

Fruit and nut trees production is an important activity across the southwest United States and this production is greatly impacted by the local climate. Temperature is the main environmental factor influencing the growth and the productivity of the fruit and nut trees as it affects the trees’ physiology and the vulnerability of flower bud, flowers, and young fruit and nut to the low temperatures or spring frost. The objective of the present study is to estimate the chilling and heat accumulation of fruit and nut trees across New Mexico. Three study sites as Fabian Garcia, Los Lunas, and Farmington were considered and climate variables were collected at hourly time step. The Utah model and the Dynamic model were used to estimate the accumulated chilling while the Forcing model was used for the heat accumulation. The possible fruit and nut trees endodormancy and ecodormancy periods were also determined at the study sites. The results obtained chilling hours of 715 ± 86.60 h at Fabian Garcia, 729.53 ± 41.71 h at Los Lunas, and 828.95 ± 83.73 h at Farmington using the Utah model. The accumulated chill portions during trees’ endodormancy was 3.12 ± 3.05 CP at Fabian Garcia, 42.23 ± 5.08 CP at Los Lunas, and 56.14 ± 1.84 CP at Farmington. The accumulated heat was 8735.52 ± 1650.91 GDH at Fabian Garcia, 7695.43 ± 212.90 GDH at Los Lunas, and 5984.69 ± 2353.20 GDH at Farmington. The fruit and nut trees are at no risk of bud flowers vulnerability at Fabian Garcia while they are under high risk of bud flowers and or young fruit and nut vulnerability to low temperatures early spring as hourly temperature can still drop below 0 °C in April at the end of ecodormancy and flower blooming and young fruits and nuts development stage at Los Lunas and Farmington. Severe weather, especially frost conditions during winter and early spring, can be a significant threat to sustainable nut and fruit production in the northern New Mexico while high chilling requirement fruit and nut trees might not meet chill requirements in the southern New Mexico.

Suggested Citation

  • Koffi Djaman & Komlan Koudahe & Murali Darapuneni & Suat Irmak, 2021. "Chilling and Heat Accumulation of Fruit and Nut Trees and Flower Bud Vulnerability to Early Spring Low Temperatures in New Mexico: Meteorological Approach," Sustainability, MDPI, vol. 13(5), pages 1-23, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2524-:d:506298
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2524/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2524/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guédon, Yann & Legave, Jean Michel, 2008. "Analyzing the time-course variation of apple and pear tree dates of flowering stages in the global warming context," Ecological Modelling, Elsevier, vol. 219(1), pages 189-199.
    2. Haïfa Benmoussa & Eike Luedeling & Mohamed Ghrab & Mehdi Ben Mimoun, 2020. "Severe winter chill decline impacts Tunisian fruit and nut orchards," Climatic Change, Springer, vol. 162(3), pages 1249-1267, October.
    3. Funes, Inmaculada & Aranda, Xavier & Biel, Carmen & Carbó, Joaquim & Camps, Francesc & Molina, Antonio J. & Herralde, Felicidad de & Grau, Beatriz & Savé, Robert, 2016. "Future climate change impacts on apple flowering date in a Mediterranean subbasin," Agricultural Water Management, Elsevier, vol. 164(P1), pages 19-27.
    4. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    5. Eduardo Fernandez & Cory Whitney & Italo F. Cuneo & Eike Luedeling, 2020. "Prospects of decreasing winter chill for deciduous fruit production in Chile throughout the 21st century," Climatic Change, Springer, vol. 159(3), pages 423-439, April.
    6. João A. Santos & Ricardo Costa & Helder Fraga, 2017. "Climate change impacts on thermal growing conditions of main fruit species in Portugal," Climatic Change, Springer, vol. 140(2), pages 273-286, January.
    7. Koffi Djaman & Curtis Owen & Margaret M. West & Samuel Allen & Komlan Koudahe & Murali Darapuneni & Michael O’Neill, 2020. "Relationship between Relative Maturity and Grain Yield of Maize ( Zea mays L.) Hybrids in Northwest New Mexico for the 2003–2019 Period," Agriculture, MDPI, vol. 10(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teresa R. Freitas & João A. Santos & Ana P. Silva & Helder Fraga, 2023. "Reviewing the Adverse Climate Change Impacts and Adaptation Measures on Almond Trees ( Prunus dulcis )," Agriculture, MDPI, vol. 13(7), pages 1-19, July.
    2. Boris Duralija, 2022. "Sustainable Fruit Growing: From Orchard to Table-Editorial Commentary," Sustainability, MDPI, vol. 14(3), pages 1-4, January.
    3. Teresa R. Freitas & João A. Santos & Ana P. Silva & André Fonseca & Helder Fraga, 2023. "Evaluation of historical and future thermal conditions for almond trees in north-eastern Portugal," Climatic Change, Springer, vol. 176(7), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pechan, Paul M. & Bohle, Heidi & Obster, Fabian, 2023. "Reducing vulnerability of fruit orchards to climate change," Agricultural Systems, Elsevier, vol. 210(C).
    2. Funes, Inmaculada & Aranda, Xavier & Biel, Carmen & Carbó, Joaquim & Camps, Francesc & Molina, Antonio J. & Herralde, Felicidad de & Grau, Beatriz & Savé, Robert, 2016. "Future climate change impacts on apple flowering date in a Mediterranean subbasin," Agricultural Water Management, Elsevier, vol. 164(P1), pages 19-27.
    3. Rodríguez, Alfredo & Pérez-López, David & Centeno, Ana & Ruiz-Ramos, Margarita, 2021. "Viability of temperate fruit tree varieties in Spain under climate change according to chilling accumulation," Agricultural Systems, Elsevier, vol. 186(C).
    4. Stevanovic Dalibor, 2016. "Common time variation of parameters in reduced-form macroeconomic models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 159-183, April.
    5. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    6. A. Fadlelmawla & M. Al-Otaibi, 2005. "Analysis of the Water Resources Status in Kuwait," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(5), pages 555-570, October.
    7. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    8. Duan, Jinyun & Li, Chenwei & Xu, Yue & Wu, Chia-Huei, 2017. "Transformational leadership and employee voice behavior: a Pygmalion mechanism," LSE Research Online Documents on Economics 68035, London School of Economics and Political Science, LSE Library.
    9. Hota, Monali & Bartsch, Fabian, 2019. "Consumer socialization in childhood and adolescence: Impact of psychological development and family structure," Journal of Business Research, Elsevier, vol. 105(C), pages 11-20.
    10. Abernethy, Margaret A. & Vagnoni, Emidia, 2004. "Power, organization design and managerial behaviour," Accounting, Organizations and Society, Elsevier, vol. 29(3-4), pages 207-225.
    11. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    12. Peter Burnell, 2008. "From Evaluating Democracy Assistance to Appraising Democracy Promotion," Political Studies, Political Studies Association, vol. 56(2), pages 414-434, June.
    13. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    14. Mammassis, Constantinos S. & Kostopoulos, Konstantinos C., 2019. "CEO goal orientations, environmental dynamism and organizational ambidexterity: An investigation in SMEs," European Management Journal, Elsevier, vol. 37(5), pages 577-588.
    15. Minghe Sun, 2005. "Warm-Start Routines for Solving Augmented Weighted Tchebycheff Network Programs in Multiple-Objective Network Programming," INFORMS Journal on Computing, INFORMS, vol. 17(4), pages 422-437, November.
    16. Viren Swami & Phik-Wern Loo & Adrian Furnham, 2010. "Public Knowledge and Beliefs About Depression Among Urban and Rural Malays in Malaysia," International Journal of Social Psychiatry, , vol. 56(5), pages 480-496, September.
    17. Jugend, Daniel & da Silva, Sérgio Luis & Salgado, Manoel Henrique & Miguel, Paulo Augusto Cauchick, 2016. "Product portfolio management and performance: Evidence from a survey of innovative Brazilian companies," Journal of Business Research, Elsevier, vol. 69(11), pages 5095-5100.
    18. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    19. Mínguez, R. & García-Bertrand, R., 2016. "Robust transmission network expansion planning in energy systems: Improving computational performance," European Journal of Operational Research, Elsevier, vol. 248(1), pages 21-32.
    20. Jenny Carolina Saldana Cortés, 2011. "Programación semidefinida aplicada a problemas de cantidad económica de pedido," Documentos CEDE 8735, Universidad de los Andes, Facultad de Economía, CEDE.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2524-:d:506298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.