IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v219y2008i1p189-199.html
   My bibliography  Save this article

Analyzing the time-course variation of apple and pear tree dates of flowering stages in the global warming context

Author

Listed:
  • Guédon, Yann
  • Legave, Jean Michel

Abstract

Over the last 40 years, perceptible advances in dates of flowering stages have been observed in apple and pear trees growing in three cropping areas in France and one in Switzerland. The time-course variation of dates of flowering stages was established for eight chronological sequences. Our aim was to propose a statistical modelling framework for such sequences with the objective of characterizing the relationship between flowering advances in fruit trees and global warming. After an exploratory analysis, change-point models were applied to multivariate and univariate sequences. The results clearly support the occurrence of a significant abrupt change in the time-course variation of flowering dates at the end of the 1980s toward more frequent early dates, the most probable change instant being between 1988 and 1989. The coincidence between this abrupt change in phenological variations and marked increases in temperature recorded particularly in France at the end of the 1980s led us to consider the flowering advances in apple and pear trees as impacts of global warming. The suddenness in the response to global warming could be explained by changes in rates for completion of chilling and heat requirements, successively essential to the development of floral primordia within buds. In all cropping areas, annual mean temperatures had suddenly increased since 1988 (1.1–1.3°C), but including noticeable monthly differences. Particularly, warming was clearly more pronounced in February and March (mean temperature increases of 1.6°C) corresponding to the main period of heat requirements, than in November and December (0.8°C) corresponding to the main period of chilling requirements. So marked temperature increases during the heat phase would have suddenly resulted in more frequent years with relatively short duration for completion of the heat requirements and consequently more frequent early flowering years, despite some years with relatively long duration of chilling requirements.

Suggested Citation

  • Guédon, Yann & Legave, Jean Michel, 2008. "Analyzing the time-course variation of apple and pear tree dates of flowering stages in the global warming context," Ecological Modelling, Elsevier, vol. 219(1), pages 189-199.
  • Handle: RePEc:eee:ecomod:v:219:y:2008:i:1:p:189-199
    DOI: 10.1016/j.ecolmodel.2008.08.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380008004146
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.08.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nancy R. Zhang & David O. Siegmund, 2007. "A Modified Bayes Information Criterion with Applications to the Analysis of Comparative Genomic Hybridization Data," Biometrics, The International Biometric Society, vol. 63(1), pages 22-32, March.
    2. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Funes, Inmaculada & Aranda, Xavier & Biel, Carmen & Carbó, Joaquim & Camps, Francesc & Molina, Antonio J. & Herralde, Felicidad de & Grau, Beatriz & Savé, Robert, 2016. "Future climate change impacts on apple flowering date in a Mediterranean subbasin," Agricultural Water Management, Elsevier, vol. 164(P1), pages 19-27.
    2. Koffi Djaman & Komlan Koudahe & Murali Darapuneni & Suat Irmak, 2021. "Chilling and Heat Accumulation of Fruit and Nut Trees and Flower Bud Vulnerability to Early Spring Low Temperatures in New Mexico: Meteorological Approach," Sustainability, MDPI, vol. 13(5), pages 1-23, February.
    3. Laurie Houston & Susan Capalbo & Clark Seavert & Meghan Dalton & David Bryla & Ramesh Sagili, 2018. "Specialty fruit production in the Pacific Northwest: adaptation strategies for a changing climate," Climatic Change, Springer, vol. 146(1), pages 159-171, January.
    4. Savé, R. & de Herralde, F. & Aranda, X. & Pla, E. & Pascual, D. & Funes, I. & Biel, C., 2012. "Potential changes in irrigation requirements and phenology of maize, apple trees and alfalfa under global change conditions in Fluvià watershed during XXIst century: Results from a modeling approximat," Agricultural Water Management, Elsevier, vol. 114(C), pages 78-87.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    2. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    3. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    4. Francesca Pilotto & Ingolf Kühn & Rita Adrian & Renate Alber & Audrey Alignier & Christopher Andrews & Jaana Bäck & Luc Barbaro & Deborah Beaumont & Natalie Beenaerts & Sue Benham & David S. Boukal & , 2020. "Meta-analysis of multidecadal biodiversity trends in Europe," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    5. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    6. Hao Wang & Guohua Liu & Zongshan Li & Xin Ye & Bojie Fu & Yihe Lü, 2017. "Analysis of the Driving Forces in Vegetation Variation in the Grain for Green Program Region, China," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    7. Yana Melnykov & Marcus Perry, 2024. "On Robust Change Point Detection and Estimation in Multisubject Studies," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 827-879, August.
    8. Fabina, Nicholas S. & Abbott, Karen C. & Gilman, R.Tucker, 2010. "Sensitivity of plant–pollinator–herbivore communities to changes in phenology," Ecological Modelling, Elsevier, vol. 221(3), pages 453-458.
    9. Xiumei Wang & Jianjun Dong & Taogetao Baoyin & Yuhai Bao, 2019. "Estimation and Climate Factor Contribution of Aboveground Biomass in Inner Mongolia’s Typical/Desert Steppes," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    10. Anna Yusa & Peter Berry & June J.Cheng & Nicholas Ogden & Barrie Bonsal & Ronald Stewart & Ruth Waldick, 2015. "Climate Change, Drought and Human Health in Canada," IJERPH, MDPI, vol. 12(7), pages 1-54, July.
    11. Portalier, S.M.J. & Candau, J.-N. & Lutscher, F., 2024. "Larval mortality from phenological mismatch can affect outbreak frequency and severity of a boreal forest defoliator," Ecological Modelling, Elsevier, vol. 493(C).
    12. A. Ogden & J. Innes, 2008. "Climate change adaptation and regional forest planning in southern Yukon, Canada," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(8), pages 833-861, October.
    13. Ye, Qing & Yang, Xiaoguang & Dai, Shuwei & Chen, Guangsheng & Li, Yong & Zhang, Caixia, 2015. "Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China," Agricultural Water Management, Elsevier, vol. 159(C), pages 35-44.
    14. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    15. Prem B. Parajuli & Priyantha Jayakody & Ying Ouyang, 2018. "Evaluation of Using Remote Sensing Evapotranspiration Data in SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 985-996, February.
    16. Fullman, Timothy J. & Bunting, Erin L. & Kiker, Gregory A. & Southworth, Jane, 2017. "Predicting shifts in large herbivore distributions under climate change and management using a spatially-explicit ecosystem model," Ecological Modelling, Elsevier, vol. 352(C), pages 1-18.
    17. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    18. Debora Sotto & Arlindo Philippi & Tan Yigitcanlar & Md Kamruzzaman, 2019. "Aligning Urban Policy with Climate Action in the Global South: Are Brazilian Cities Considering Climate Emergency in Local Planning Practice?," Energies, MDPI, vol. 12(18), pages 1-31, September.
    19. Jilin Wu & Manhong Yang & Jinyou Zuo & Ningling Yin & Yimin Yang & Wenhai Xie & Shuiliang Liu, 2024. "Spatio-Temporal Evolution of Ecological Resilience in Ecologically Fragile Areas and Its Influencing Factors: A Case Study of the Wuling Mountains Area, China," Sustainability, MDPI, vol. 16(9), pages 1-21, April.
    20. Baris Karapinar & Gökhan Özertan, 2020. "Yield implications of date and cultivar adaptation to wheat phenological shifts: a survey of farmers in Turkey," Climatic Change, Springer, vol. 158(3), pages 453-472, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:219:y:2008:i:1:p:189-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.