IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p2360-d503765.html
   My bibliography  Save this article

An Efficient and Robust Current Control for Polymer Electrolyte Membrane Fuel Cell Power System

Author

Listed:
  • Mohammed Yousri Silaa

    (Engineering School of Vitoria, University of the Basque Country UPV/EHU, Nieves Cano 12, 1006 Vitoria, Spain
    Laboratory of Semiconductors and Functional Materials, Amar Telidji University of Laghouat, BP 37G, Laghouat 03000, Algeria)

  • Mohamed Derbeli

    (Engineering School of Vitoria, University of the Basque Country UPV/EHU, Nieves Cano 12, 1006 Vitoria, Spain)

  • Oscar Barambones

    (Engineering School of Vitoria, University of the Basque Country UPV/EHU, Nieves Cano 12, 1006 Vitoria, Spain)

  • Cristian Napole

    (Engineering School of Vitoria, University of the Basque Country UPV/EHU, Nieves Cano 12, 1006 Vitoria, Spain)

  • Ali Cheknane

    (Laboratory of Semiconductors and Functional Materials, Amar Telidji University of Laghouat, BP 37G, Laghouat 03000, Algeria)

  • José María Gonzalez De Durana

    (Engineering School of Vitoria, University of the Basque Country UPV/EHU, Nieves Cano 12, 1006 Vitoria, Spain)

Abstract

Taking into account the restricted ability of polymer electrolyte membrane fuel cell (PEMFC) to generate energy, it is compulsory to present techniques, in which an efficient operating power can be achieved. In many applications, the PEMFC is usually coupled with a high step-up DC-DC power converter which not only provides efficient power conversion, but also offers highly regulated output voltage. Due to the no-linearity of the PEMFC power systems, the application of conventional linear controllers such as proportional-integral (PI) did not succeed to drive the system to operate precisely in an adequate power point. Therefore, this paper proposes a robust non-linear integral fast terminal sliding mode control (IFTSMC) aiming to improve the power quality generated by the PEMFC; besides, a digital filter is designed and implemented to smooth the signals from the chattering effect of the IFTSMC. The stability proof of the IFTSMC is demonstrated via Lyapunov analysis. The proposed control scheme is designed for an experimental closed-loop system which consisted of a Heliocentric hy-Expert™ FC-50W, MicroLabBox dSPACE DS1202, step-up DC-DC power converter and programmable DC power supplies. Comparative results with the PI controller indicate that a reduction of 96 % in the response time could be achieved using the suggested algorithm; where, up to more than 91 % of the chattering phenomenon could be eliminated via the application of the digital filter.

Suggested Citation

  • Mohammed Yousri Silaa & Mohamed Derbeli & Oscar Barambones & Cristian Napole & Ali Cheknane & José María Gonzalez De Durana, 2021. "An Efficient and Robust Current Control for Polymer Electrolyte Membrane Fuel Cell Power System," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2360-:d:503765
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/2360/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/2360/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tamer Khatib & Wilfried Elmenreich & Azah Mohamed, 2017. "Simplified I-V Characteristic Tester for Photovoltaic Modules Using a DC-DC Boost Converter," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    2. Hegazy Rezk & Ahmed Fathy, 2020. "Performance Improvement of PEM Fuel Cell Using Variable Step-Size Incremental Resistance MPPT Technique," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    3. Dasheng Lee & Kuan-Chung Lin, 2020. "How to Transform Sustainable Energy Technology into a Unicorn Start-Up: Technology Review and Case Study," Sustainability, MDPI, vol. 12(7), pages 1-26, April.
    4. S. M. Seyed Mahmoudi & Niloufar Sarabchi & Mortaza Yari & Marc A. Rosen, 2019. "Exergy and Exergoeconomic Analyses of a Combined Power Producing System including a Proton Exchange Membrane Fuel Cell and an Organic Rankine Cycle," Sustainability, MDPI, vol. 11(12), pages 1-25, June.
    5. Mohammed Yousri Silaa & Mohamed Derbeli & Oscar Barambones & Ali Cheknane, 2020. "Design and Implementation of High Order Sliding Mode Control for PEMFC Power System," Energies, MDPI, vol. 13(17), pages 1-15, August.
    6. Ernesto Chavero-Navarrete & Mario Trejo-Perea & Juan-Carlos Jáuregui-Correa & Roberto-Valentín Carrillo-Serrano & José-Gabriel Rios-Moreno, 2019. "Pitch Angle Optimization by Intelligent Adjusting the Gains of a PI Controller for Small Wind Turbines in Areas with Drastic Wind Speed Changes," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    7. Jouda Arfaoui & Hegazy Rezk & Mujahed Al-Dhaifallah & Mohamed N. Ibrahim & Mami Abdelkader, 2020. "Simulation-Based Coyote Optimization Algorithm to Determine Gains of PI Controller for Enhancing the Performance of Solar PV Water-Pumping System," Energies, MDPI, vol. 13(17), pages 1-17, August.
    8. Tabbi Wilberforce & Abdul Ghani Olabi, 2020. "Design of Experiment (DOE) Analysis of 5-Cell Stack Fuel Cell Using Three Bipolar Plate Geometry Designs," Sustainability, MDPI, vol. 12(11), pages 1-23, June.
    9. Antonio García-Olivares & Jordi Solé & Roger Samsó & Joaquim Ballabrera-Poy, 2020. "Sustainable European Transport System in a 100% Renewable Economy," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    10. Mohamed Louzazni & Sameer Al-Dahidi & Marco Mussetta, 2020. "Fuel Cell Characteristic Curve Approximation Using the Bézier Curve Technique," Sustainability, MDPI, vol. 12(19), pages 1-23, October.
    11. Mohamed Derbeli & Oscar Barambones & Jose Antonio Ramos-Hernanz & Lassaad Sbita, 2019. "Real-Time Implementation of a Super Twisting Algorithm for PEM Fuel Cell Power System," Energies, MDPI, vol. 12(9), pages 1-20, April.
    12. Zhongmin Wan & Huawei Chang & Shuiming Shu & Yongxiang Wang & Haolin Tang, 2014. "A Review on Cold Start of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 7(5), pages 1-25, May.
    13. Alan Cruz Rojas & Guadalupe Lopez Lopez & J. F. Gomez-Aguilar & Victor M. Alvarado & Cinda Luz Sandoval Torres, 2017. "Control of the Air Supply Subsystem in a PEMFC with Balance of Plant Simulation," Sustainability, MDPI, vol. 9(1), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Napole, Cristian & Derbeli, Mohamed & Barambones, Oscar, 2021. "A global integral terminal sliding mode control based on a novel reaching law for a proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 301(C).
    2. Muhammad Majid Gulzar, 2023. "Maximum Power Point Tracking of a Grid Connected PV Based Fuel Cell System Using Optimal Control Technique," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
    3. Mohamed Derbeli & Asma Charaabi & Oscar Barambones & Cristian Napole, 2021. "High-Performance Tracking for Proton Exchange Membrane Fuel Cell System PEMFC Using Model Predictive Control," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    4. Xiongfeng Deng & Yiqing Huang & Binzi Xu & Liang Tao, 2023. "Position and Attitude Tracking Finite-Time Adaptive Control for a VTOL Aircraft Using Global Fast Terminal Sliding Mode Control," Mathematics, MDPI, vol. 11(12), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Derbeli & Asma Charaabi & Oscar Barambones & Cristian Napole, 2021. "High-Performance Tracking for Proton Exchange Membrane Fuel Cell System PEMFC Using Model Predictive Control," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    2. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    3. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    4. Javaid, Usman & Mehmood, Adeel & Iqbal, Jamshed & Uppal, Ali Arshad, 2023. "Neural network and URED observer based fast terminal integral sliding mode control for energy efficient polymer electrolyte membrane fuel cell used in vehicular technologies," Energy, Elsevier, vol. 269(C).
    5. Leopoldo Angrisani & Mauro D’Arco & Egidio De Benedetto & Luigi Duraccio & Fabrizio Lo Regio, 2023. "Broadband Power Line Communication in Railway Traction Lines: A Survey," Energies, MDPI, vol. 16(17), pages 1-22, September.
    6. Abderrazek Saoudi & Saber Krim & Mohamed Faouzi Mimouni, 2021. "Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction Motor for Standalone Photovoltaic Water Pumping System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    7. Sun-Joon Byun & Zhen Huan Wang & Jun Son & Dong-Kurl Kwak & Young-Chul Kwon, 2018. "Experimental Study on Improvement of Performance by Wave Form Cathode Channels in a PEM Fuel Cell," Energies, MDPI, vol. 11(2), pages 1-14, February.
    8. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    9. Hegazy Rezk & Mokhtar Aly & Rania M. Ghoniem, 2023. "Robust Fuzzy Logic MPPT Using Gradient-Based Optimization for PEMFC Power System," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    10. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    11. Lopez Lopez, Guadalupe & Schacht Rodriguez, Ricardo & Alvarado, Victor M. & Gomez-Aguilar, J.F. & Mota, Juan E. & Sandoval, Cinda, 2017. "Hybrid PEMFC-supercapacitor system: Modeling and energy management in energetic macroscopic representation," Applied Energy, Elsevier, vol. 205(C), pages 1478-1494.
    12. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. N. Kanagaraj & Hegazy Rezk & Mohamed R. Gomaa, 2020. "A Variable Fractional Order Fuzzy Logic Control Based MPPT Technique for Improving Energy Conversion Efficiency of Thermoelectric Power Generator," Energies, MDPI, vol. 13(17), pages 1-18, September.
    14. Jin Hyun Kim & Gwang Goo Lee & Woo Tae Kim, 2017. "Comparison of Liquid Water Dynamics in Bent Gas Channels of a Polymer Electrolyte Membrane Fuel Cell with Different Channel Cross Sections in a Channel Flooding Situation," Energies, MDPI, vol. 10(6), pages 1-18, May.
    15. Roman Niestrój & Tomasz Rogala & Wojciech Skarka, 2020. "An Energy Consumption Model for Designing an AGV Energy Storage System with a PEMFC Stack," Energies, MDPI, vol. 13(13), pages 1-31, July.
    16. Pawel Latosinski & Andrzej Bartoszewicz, 2023. "Sliding Mode Controllers in Energy Systems and Other Applications," Energies, MDPI, vol. 16(3), pages 1-4, January.
    17. Phatiphat Thounthong & Pongsiri Mungporn & Babak Nahid-Mobarakeh & Nicu Bizon & Serge Pierfederici & Damien Guilbert, 2021. "Improved Adaptive Hamiltonian Control Law for Constant Power Load Stability Issue in DC Microgrid: Case Study for Multiphase Interleaved Fuel Cell Boost Converter," Sustainability, MDPI, vol. 13(14), pages 1-17, July.
    18. Xiaokang Yang & Jiaqi Sun & Guang Jiang & Shucheng Sun & Zhigang Shao & Hongmei Yu & Fangwei Duan & Yingxuan Yang, 2021. "Experimental Study on Critical Membrane Water Content of Proton Exchange Membrane Fuel Cells for Cold Storage at −50 °C," Energies, MDPI, vol. 14(15), pages 1-17, July.
    19. Riccardo Balzarotti & Saverio Latorrata & Marco Mariani & Paola Gallo Stampino & Giovanni Dotelli, 2020. "Optimization of Perfluoropolyether-Based Gas Diffusion Media Preparation for PEM Fuel Cells," Energies, MDPI, vol. 13(7), pages 1-14, April.
    20. Long Wu & Li Sun & Jiong Shen & Qingsong Hua, 2018. "Multiple Model Predictive Hybrid Feedforward Control of Fuel Cell Power Generation System," Sustainability, MDPI, vol. 10(2), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2360-:d:503765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.