IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p3980-d1076775.html
   My bibliography  Save this article

Maximum Power Point Tracking of a Grid Connected PV Based Fuel Cell System Using Optimal Control Technique

Author

Listed:
  • Muhammad Majid Gulzar

    (Control & Instrumentation Engineering Department & Center for Renewable Energy and Power Systems, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

Abstract

The efficiency of renewable energy sources like PV and fuel cells is improving with advancements in technology. However, maximum power point (MPP) tracking remains the most important factor for a PV-based fuel cell power system to perform at its best. The MPP of a PV system mainly depends on irradiance and temperature, while the MPP of a fuel cell depends upon factors such as the temperature of a cell, membrane water content, and oxygen and hydrogen partial pressure. With a change in any of these factors, the output is changed, which is highly undesirable in real-life applications. Thus, an efficient tracking method is required to achieve MPP. In this research, an optimal salp swarm algorithm tuned fractional order PID technique is proposed, which tracks the MPP in both steady and dynamic environments. To put that technique to the test, a system was designed comprised of a grid-connected proton exchange membrane fuel cell together with PV system and a DC-DC boost converter along with the resistive load. The output from the controller was further tuned and PWM was generated which was fed to the switch of the converter. MATLAB/SIMULINK was used to simulate this model to study the results. The response of the system under different steady and dynamic conditions was compared with those of the conventionally used techniques to validate the competency of the proposed approach in terms of fast response with minimum oscillation.

Suggested Citation

  • Muhammad Majid Gulzar, 2023. "Maximum Power Point Tracking of a Grid Connected PV Based Fuel Cell System Using Optimal Control Technique," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:3980-:d:1076775
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/3980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/3980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Derbeli & Asma Charaabi & Oscar Barambones & Cristian Napole, 2021. "High-Performance Tracking for Proton Exchange Membrane Fuel Cell System PEMFC Using Model Predictive Control," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    2. Mohammed Yousri Silaa & Mohamed Derbeli & Oscar Barambones & Ali Cheknane, 2020. "Design and Implementation of High Order Sliding Mode Control for PEMFC Power System," Energies, MDPI, vol. 13(17), pages 1-15, August.
    3. Rezk, Hegazy & Aly, Mokhtar & Fathy, Ahmed, 2021. "A novel strategy based on recent equilibrium optimizer to enhance the performance of PEM fuel cell system through optimized fuzzy logic MPPT," Energy, Elsevier, vol. 234(C).
    4. Habib Kraiem & Aymen Flah & Naoui Mohamed & Mohamed H. B. Messaoud & Essam A. Al-Ammar & Ahmed Althobaiti & Abdullah Alhumaidi Alotaibi & Michał Jasiński & Vishnu Suresh & Zbigniew Leonowicz & Elżbiet, 2022. "Decreasing the Battery Recharge Time if Using a Fuzzy Based Power Management Loop for an Isolated Micro-Grid Farm," Sustainability, MDPI, vol. 14(5), pages 1-21, March.
    5. Doudou N. Luta & Atanda K. Raji, 2019. "Fuzzy Rule-Based and Particle Swarm Optimisation MPPT Techniques for a Fuel Cell Stack," Energies, MDPI, vol. 12(5), pages 1-15, March.
    6. Naoui Mohamed & Flah Aymen & Abdullah Altamimi & Zafar A. Khan & Sbita Lassaad, 2022. "Power Management and Control of a Hybrid Electric Vehicle Based on Photovoltaic, Fuel Cells, and Battery Energy Sources," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    7. Muhammad Majid Gulzar & Muhammad Iqbal & Sulman Shahzad & Hafiz Abdul Muqeet & Muhammad Shahzad & Muhammad Majid Hussain, 2022. "Load Frequency Control (LFC) Strategies in Renewable Energy-Based Hybrid Power Systems: A Review," Energies, MDPI, vol. 15(10), pages 1-23, May.
    8. Mohammed Yousri Silaa & Mohamed Derbeli & Oscar Barambones & Cristian Napole & Ali Cheknane & José María Gonzalez De Durana, 2021. "An Efficient and Robust Current Control for Polymer Electrolyte Membrane Fuel Cell Power System," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Ahmad & Syed Abdul Rahman Kashif & Arslan Ashraf & Muhammad Majid Gulzar & Mohammed Alqahtani & Muhammad Khalid, 2023. "Coordinated Economic Operation of Hydrothermal Units with HVDC Link Based on Lagrange Multipliers," Mathematics, MDPI, vol. 11(7), pages 1-19, March.
    2. Elias Roumpakias & Tassos Stamatelos, 2023. "Comparative Performance Analysis of a Grid-Connected Photovoltaic Plant in Central Greece after Several Years of Operation Using Neural Networks," Sustainability, MDPI, vol. 15(10), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Derbeli & Asma Charaabi & Oscar Barambones & Cristian Napole, 2021. "High-Performance Tracking for Proton Exchange Membrane Fuel Cell System PEMFC Using Model Predictive Control," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    2. Khlid Ben Hamad & Doudou N. Luta & Atanda K. Raji, 2021. "A Grid-Tied Fuel Cell Multilevel Inverter with Low Harmonic Distortions," Energies, MDPI, vol. 14(3), pages 1-24, January.
    3. Javaid, Usman & Mehmood, Adeel & Iqbal, Jamshed & Uppal, Ali Arshad, 2023. "Neural network and URED observer based fast terminal integral sliding mode control for energy efficient polymer electrolyte membrane fuel cell used in vehicular technologies," Energy, Elsevier, vol. 269(C).
    4. Xiongfeng Deng & Yiqing Huang & Binzi Xu & Liang Tao, 2023. "Position and Attitude Tracking Finite-Time Adaptive Control for a VTOL Aircraft Using Global Fast Terminal Sliding Mode Control," Mathematics, MDPI, vol. 11(12), pages 1-22, June.
    5. El Aoumari, Abdelaziz & Ouadi, Hamid & El-Bakkouri, Jamal & Giri, Fouad, 2024. "Adaptive filtered high-gain observer for PEMFC systems in electric vehicles," Renewable Energy, Elsevier, vol. 231(C).
    6. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    7. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    8. Changhao Lv & Qingquan Jia & Lijuan Lin & Jinwei Cui, 2023. "Local Frequency Modulation Strategy Based on Controllable Load Characteristic Identification of Multi-Port Power Router," Energies, MDPI, vol. 16(9), pages 1-22, April.
    9. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    10. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    11. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    12. Muhammad Anique Aslam & Syed Abdul Rahman Kashif & Muhammad Majid Gulzar & Mohammed Alqahtani & Muhammad Khalid, 2023. "A Novel Multi Level Dynamic Decomposition Based Coordinated Control of Electric Vehicles in Multimicrogrids," Sustainability, MDPI, vol. 15(16), pages 1-29, August.
    13. Li, Da & Zhang, Zhaosheng & Zhou, Litao & Liu, Peng & Wang, Zhenpo & Deng, Junjun, 2022. "Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction," Applied Energy, Elsevier, vol. 325(C).
    14. Tri-Cuong Do & Hoai-An Trinh & Kyoung-Kwan Ahn, 2023. "Hierarchical Control Strategy with Battery Dynamic Consideration for a Dual Fuel Cell/Battery Tramway," Mathematics, MDPI, vol. 11(10), pages 1-19, May.
    15. Yuan, Yongliang & Yang, Qingkang & Ren, Jianji & Mu, Xiaokai & Wang, Zhenxi & Shen, Qianlong & Zhao, Wu, 2024. "Attack-defense strategy assisted osprey optimization algorithm for PEMFC parameters identification," Renewable Energy, Elsevier, vol. 225(C).
    16. Pawel Latosinski & Andrzej Bartoszewicz, 2023. "Sliding Mode Controllers in Energy Systems and Other Applications," Energies, MDPI, vol. 16(3), pages 1-4, January.
    17. Catalin Vrabie, 2022. "Electric Vehicles Optimism versus the Energy Market Reality," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    18. Zheng, Shiyong & Shahzad, Muhammad & Asif, Hafiz Muhammad & Gao, Jing & Muqeet, Hafiz Abdul, 2023. "Advanced optimizer for maximum power point tracking of photovoltaic systems in smart grid: A roadmap towards clean energy technologies," Renewable Energy, Elsevier, vol. 206(C), pages 1326-1335.
    19. Águila-León, Jesús & Vargas-Salgado, Carlos & Díaz-Bello, Dácil & Montagud-Montalvá, Carla, 2024. "Optimizing photovoltaic systems: A meta-optimization approach with GWO-Enhanced PSO algorithm for improving MPPT controllers," Renewable Energy, Elsevier, vol. 230(C).
    20. Fathy, Ahmed & Babu, Thanikanti Sudhakar & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Yousri, Dalia, 2022. "Recent approach based heterogeneous comprehensive learning Archimedes optimization algorithm for identifying the optimal parameters of different fuel cells," Energy, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:3980-:d:1076775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.