IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4531-d407455.html
   My bibliography  Save this article

A Variable Fractional Order Fuzzy Logic Control Based MPPT Technique for Improving Energy Conversion Efficiency of Thermoelectric Power Generator

Author

Listed:
  • N. Kanagaraj

    (Electrical Engineering Department, College of Engineering at Wadi Aldawaser, Prince Sattam Bin Abdulaziz University, Al-Kharj 11991, Saudi Arabia)

  • Hegazy Rezk

    (Electrical Engineering Department, College of Engineering at Wadi Aldawaser, Prince Sattam Bin Abdulaziz University, Al-Kharj 11991, Saudi Arabia
    Electrical Engineering Department, Faculty of Engineering, Minia University, Al Minya 61519, Egypt)

  • Mohamed R. Gomaa

    (Mechanical Engineering Department, Benha Faculty of Engineering, Benha University, Benha 13512, Egypt
    Mechanical Engineering Department, Faculty of Engineering, Al-Hussein Bin Talal University, Ma’an 71111, Jordan)

Abstract

Thermoelectric generation technology is considered to be one of the viable methods to convert waste heat energy directly into electricity. The utilization of this technology has been impeded due to low energy conversion efficiency. This paper aims to improve the energy conversion efficiency of the thermoelectric generator (TEG) model with a novel maximum power point tracking (MPPT) technique. A variable fractional order fuzzy logic controller (VFOFLC)-based MPPT technique is proposed in the present work in which the operating point of the TEG is moved quickly towards an optimal position to increase the energy harvesting. The fraction order term α, introduced in the MPPT algorithm, will expand or contract the input domain of the fuzzy logic controller (FLC to shorten the tracking time and maintain a steady-state output around the maximum power point (MPP). The performance of the proposed MPPT technique was verified with the TEG model by simulation using MATLAB /SIMULINK software. Then, the overall performance of the VFOFLC-based MPPT technique was analyzed and compared with Perturb and observe (P&O) and incremental resistance (INR)-based MPPT techniques. The obtained results confirm that the proposed MPPT technique can improve the energy conversion efficiency of the TEG by harvesting the maximum power within a shorter time and maintaining a steady-state output when compared to other techniques.

Suggested Citation

  • N. Kanagaraj & Hegazy Rezk & Mohamed R. Gomaa, 2020. "A Variable Fractional Order Fuzzy Logic Control Based MPPT Technique for Improving Energy Conversion Efficiency of Thermoelectric Power Generator," Energies, MDPI, vol. 13(17), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4531-:d:407455
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4531/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4531/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hegazy Rezk & Ahmed Fathy, 2020. "Performance Improvement of PEM Fuel Cell Using Variable Step-Size Incremental Resistance MPPT Technique," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    2. Bicheng Tan & Xin Ke & Dachuan Tang & Sheng Yin, 2019. "Improved Perturb and Observation Method Based on Support Vector Regression," Energies, MDPI, vol. 12(6), pages 1-11, March.
    3. Montecucco, Andrea & Knox, Andrew R., 2014. "Accurate simulation of thermoelectric power generating systems," Applied Energy, Elsevier, vol. 118(C), pages 166-172.
    4. Chen, Wei-Hsin & Huang, Shih-Rong & Wang, Xiao-Dong & Wu, Po-Hua & Lin, Yu-Li, 2017. "Performance of a thermoelectric generator intensified by temperature oscillation," Energy, Elsevier, vol. 133(C), pages 257-269.
    5. Daniela Charris & Diego Gomez & Angie Rincon Ortega & Mauricio Carmona & Mauricio Pardo, 2020. "A Thermoelectric Energy Harvesting Scheme with Passive Cooling for Outdoor IoT Sensors," Energies, MDPI, vol. 13(11), pages 1-25, June.
    6. Ibrahim, Amin & Rahnamayan, Shahryar & Vargas Martin, Miguel & Yilbas, Bekir, 2014. "Multi-objective thermal analysis of a thermoelectric device: Influence of geometric features on device characteristics," Energy, Elsevier, vol. 77(C), pages 305-317.
    7. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    8. Yilbas, B.S. & Sahin, A.Z., 2010. "Thermoelectric device and optimum external load parameter and slenderness ratio," Energy, Elsevier, vol. 35(12), pages 5380-5384.
    9. Mohamed, Mohamed A. & Zaki Diab, Ahmed A. & Rezk, Hegazy, 2019. "Partial shading mitigation of PV systems via different meta-heuristic techniques," Renewable Energy, Elsevier, vol. 130(C), pages 1159-1175.
    10. Loise Rissini Kramer & Anderson Luis Oliveira Maran & Samara Silva de Souza & Oswaldo Hideo Ando Junior, 2019. "Analytical and Numerical Study for the Determination of a Thermoelectric Generator’s Internal Resistance," Energies, MDPI, vol. 12(16), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed R. Gomaa & Talib K. Murtadha & Ahmad Abu-jrai & Hegazy Rezk & Moath A. Altarawneh & Abdullah Marashli, 2022. "Experimental Investigation on Waste Heat Recovery from a Cement Factory to Enhance Thermoelectric Generation," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    2. Hegazy Rezk & Mohammed Mazen Alhato & Mujahed Al-Dhaifallah & Soufiene Bouallègue, 2021. "A Sine Cosine Algorithm-Based Fractional MPPT for Thermoelectric Generation System," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    3. Ahmed Fathy & Hegazy Rezk & Dalia Yousri & Essam H. Houssein & Rania M. Ghoniem, 2021. "Parameter Identification of Optimized Fractional Maximum Power Point Tracking for Thermoelectric Generation Systems Using Manta Ray Foraging Optimization," Mathematics, MDPI, vol. 9(22), pages 1-18, November.
    4. N. Kanagaraj & Hegazy Rezk, 2021. "Dynamic Voltage Restorer Integrated with Photovoltaic-Thermoelectric Generator for Voltage Disturbances Compensation and Energy Saving in Three-Phase System," Sustainability, MDPI, vol. 13(6), pages 1-31, March.
    5. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    6. Kanagaraj N, 2021. "Photovoltaic and Thermoelectric Generator Combined Hybrid Energy System with an Enhanced Maximum Power Point Tracking Technique for Higher Energy Conversion Efficiency," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    7. Gürbüz, Habib & Akçay, Hüsameddin, 2023. "Development of an integrated waste heat recovery system consisting of a thermoelectric generator and thermal energy storage for a propane fueled SI engine," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wei-Hsin & Chiou, Yi-Bin, 2020. "Geometry design for maximizing output power of segmented skutterudite thermoelectric generator by evolutionary computation," Applied Energy, Elsevier, vol. 274(C).
    2. Chen, Wei-Hsin & Wang, Chi-Ming & Lee, Da-Sheng & Kwon, Eilhann E. & Ashokkumar, Veeramuthu & Culaba, Alvin B., 2022. "Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins," Applied Energy, Elsevier, vol. 314(C).
    3. Ibáñez-Puy, Elia & Martín-Gómez, César & Bermejo-Busto, Javier & Zuazua-Ros, Amaia, 2018. "Thermal and energy performance assessment of a thermoelectric heat pump integrated in an adiabatic box," Applied Energy, Elsevier, vol. 228(C), pages 681-688.
    4. Fan, Shifa & Gao, Yuanwen, 2018. "Numerical simulation on thermoelectric and mechanical performance of annular thermoelectric generator," Energy, Elsevier, vol. 150(C), pages 38-48.
    5. Li, Bo & Huang, Kuo & Yan, Yuying & Li, Yong & Twaha, Ssennoga & Zhu, Jie, 2017. "Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles," Applied Energy, Elsevier, vol. 205(C), pages 868-879.
    6. Compadre Torrecilla, Marcos & Montecucco, Andrea & Siviter, Jonathan & Knox, Andrew R. & Strain, Andrew, 2019. "Novel model and maximum power tracking algorithm for thermoelectric generators operated under constant heat flux," Applied Energy, Elsevier, vol. 256(C).
    7. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    8. Shen, Zu-Guo & Wu, Shuang-Ying & Xiao, Lan & Yin, Gang, 2016. "Theoretical modeling of thermoelectric generator with particular emphasis on the effect of side surface heat transfer," Energy, Elsevier, vol. 95(C), pages 367-379.
    9. Agnieszka Żelazna & Justyna Gołębiowska, 2020. "A PV-Powered TE Cooling System with Heat Recovery: Energy Balance and Environmental Impact Indicators," Energies, MDPI, vol. 13(7), pages 1-22, April.
    10. Aranzazu D. Martin & Juan M. Cano & Reyes S. Herrera & Jesus R. Vazquez, 2019. "Wireless Sliding MPPT Control of Photovoltaic Systems in Distributed Generation Systems," Energies, MDPI, vol. 12(17), pages 1-16, August.
    11. Ravi Anant Kishore & Roop L. Mahajan & Shashank Priya, 2018. "Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator," Energies, MDPI, vol. 11(9), pages 1-17, August.
    12. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    14. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    15. Reyes García-Contreras & Andrés Agudelo & Arántzazu Gómez & Pablo Fernández-Yáñez & Octavio Armas & Ángel Ramos, 2019. "Thermoelectric Energy Recovery in a Light-Duty Diesel Vehicle under Real-World Driving Conditions at Different Altitudes with Diesel, Biodiesel and GTL Fuels," Energies, MDPI, vol. 12(6), pages 1-18, March.
    16. Yilbas, Bekir Sami & Akhtar, S.S. & Sahin, A.Z., 2016. "Thermal and stress analyses in thermoelectric generator with tapered and rectangular pin configurations," Energy, Elsevier, vol. 114(C), pages 52-63.
    17. Soprani, S. & Haertel, J.H.K. & Lazarov, B.S. & Sigmund, O. & Engelbrecht, K., 2016. "A design approach for integrating thermoelectric devices using topology optimization," Applied Energy, Elsevier, vol. 176(C), pages 49-64.
    18. Fatih Selimefendigil & Hakan F. Oztop & Mikhail A. Sheremet, 2021. "Thermoelectric Generation with Impinging Nano-Jets," Energies, MDPI, vol. 14(2), pages 1-24, January.
    19. Nassef, Ahmed M. & Olabi, A.G. & Rodriguez, Cristina & Abdelkareem, Mohammad Ali & Rezk, Hegazy, 2021. "Optimal operating parameter determination and modeling to enhance methane production from macroalgae," Renewable Energy, Elsevier, vol. 163(C), pages 2190-2197.
    20. Hegazy Rezk & Mokhtar Aly & Rania M. Ghoniem, 2023. "Robust Fuzzy Logic MPPT Using Gradient-Based Optimization for PEMFC Power System," Sustainability, MDPI, vol. 15(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4531-:d:407455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.