Life Cycle Impact Assessment of Recycled Aggregate Concrete, Geopolymer Concrete, and Recycled Aggregate-Based Geopolymer Concrete
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Taehyoung Kim & Sungho Tae & Chang U Chae, 2016. "Analysis of Environmental Impact for Concrete Using LCA by Varying the Recycling Components, the Compressive Strength and the Admixture Material Mixing," Sustainability, MDPI, vol. 8(4), pages 1-14, April.
- Hendrik G. van Oss & Amy C. Padovani, 2003. "Cement Manufacture and the Environment Part II: Environmental Challenges and Opportunities," Journal of Industrial Ecology, Yale University, vol. 7(1), pages 93-126, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wenqiang Xing & Zhihe Cheng & Xianzhang Ling & Liang Tang & Shengyi Cong & Shaowei Wei & Lin Geng, 2022. "Bearing Properties and Stability Analysis of the Slope Protection Framework Using Recycled Railway Sleepers," Sustainability, MDPI, vol. 14(8), pages 1-11, April.
- Zahir Azimi & Vahab Toufigh, 2023. "Influence of Blast Furnace Slag on Pore Structure and Transport Characteristics in Low-Calcium Fly-Ash-Based Geopolymer Concrete," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
- Lucas Caon Menegatti & Letícia Ikeda Castrillon Fernandez & Lucas Rosse Caldas & Marco Pepe & Francesco Pittau & Giulio Zani & Marco Carlo Rampini & Julien Michels & Romildo Dias Toledo Filho & Enzo M, 2022. "Environmental Performance of Deconstructable Concrete Beams Made with Recycled Aggregates," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
- Meredith Fowlie & Mar Reguant & Stephen P. Ryan, 2016.
"Market-Based Emissions Regulation and Industry Dynamics,"
Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 249-302.
- Meredith Fowlie & Mar Reguant & Stephen P. Ryan, 2012. "Market-Based Emissions Regulation and Industry Dynamics," NBER Working Papers 18645, National Bureau of Economic Research, Inc.
- Navia, R. & Rivela, B. & Lorber, K.E. & Méndez, R., 2006. "Recycling contaminated soil as alternative raw material in cement facilities: Life cycle assessment," Resources, Conservation & Recycling, Elsevier, vol. 48(4), pages 339-356.
- Chiu Chuen Onn & Kim Hung Mo & Mohammed K. H. Radwan & Wen Hong Liew & Chee Guan Ng & Sumiani Yusoff, 2019. "Strength, Carbon Footprint and Cost Considerations of Mortar Blends with High Volume Ground Granulated Blast Furnace Slag," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
- Atmaca, Adem & Kanoglu, Mehmet, 2012. "Reducing energy consumption of a raw mill in cement industry," Energy, Elsevier, vol. 42(1), pages 261-269.
- Reijnders, L., 2005. "Disposal, uses and treatments of combustion ashes: a review," Resources, Conservation & Recycling, Elsevier, vol. 43(3), pages 313-336.
- Woodward, Rachel & Duffy, Noel, 2011. "Cement and concrete flow analysis in a rapidly expanding economy: Ireland as a case study," Resources, Conservation & Recycling, Elsevier, vol. 55(4), pages 448-455.
- Azad Rahman & Mohammad G. Rasul & M.M.K. Khan & Subhash C. Sharma, 2017. "Assessment of Energy Performance and Emission Control Using Alternative Fuels in Cement Industry through a Process Model," Energies, MDPI, vol. 10(12), pages 1-17, December.
- Peter Holmes & Tom Reilly & Jim Rollo, 2011.
"Border carbon adjustments and the potential for protectionism,"
Climate Policy, Taylor & Francis Journals, vol. 11(2), pages 883-900, March.
- Peter Holmes & Tom Reilly & Jim Rollo, 2010. "Border Carbon Adjustments and the Potential for Protectionism," Working Paper Series 0610, Department of Economics, University of Sussex Business School.
- Žigart, Maja & Kovačič Lukman, Rebeka & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2018. "Environmental impact assessment of building envelope components for low-rise buildings," Energy, Elsevier, vol. 163(C), pages 501-512.
- Taehyoung Kim & Sanghyo Lee & Chang U. Chae & Hyoungjae Jang & Kanghee Lee, 2017. "Development of the CO 2 Emission Evaluation Tool for the Life Cycle Assessment of Concrete," Sustainability, MDPI, vol. 9(11), pages 1-14, November.
- Boughton, Bob, 2007. "Evaluation of shredder residue as cement manufacturing feedstock," Resources, Conservation & Recycling, Elsevier, vol. 51(3), pages 621-642.
- Jeffrey T. Macher & Nathan H. Miller & Matthew Osborne, 2021. "Finding Mr. Schumpeter: technology adoption in the cement industry," RAND Journal of Economics, RAND Corporation, vol. 52(1), pages 78-99, March.
- Muhammad Mubashir Ajmal & Asad Ullah Qazi & Ali Ahmed & Ubaid Ahmad Mughal & Safeer Abbas & Syed Minhaj Saleem Kazmi & Muhammad Junaid Munir, 2023. "Structural Performance of Energy Efficient Geopolymer Concrete Confined Masonry: An Approach towards Decarbonization," Energies, MDPI, vol. 16(8), pages 1-27, April.
- Yurong Zhang & Chaojun Mao & Jiandong Wang & Yanhong Gao & Junzhi Zhang, 2020. "Sustainability of Reinforced Concrete Beams with/without BF Influenced by Cracking Capacity and Chloride Diffusion," Sustainability, MDPI, vol. 12(3), pages 1-12, February.
- Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
- Habibi, Alireza & Bamshad, Omid & Golzary, Abooali & Buswell, Richard & Osmani, Mohammed, 2024. "Biases in life cycle assessment of circular concrete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Beatrice Castellani & Elena Morini & Mirko Filipponi & Andrea Nicolini & Massimo Palombo & Franco Cotana & Federico Rossi, 2014. "Comparative Analysis of Monitoring Devices for Particulate Content in Exhaust Gases," Sustainability, MDPI, vol. 6(7), pages 1-21, July.
- Hashimoto, Shizuka & Fujita, Tsuyoshi & Geng, Yong & Nagasawa, Emiri, 2010. "Realizing CO2 emission reduction through industrial symbiosis: A cement production case study for Kawasaki," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 704-710.
- Ali Naqi & Jeong Gook Jang, 2019. "Recent Progress in Green Cement Technology Utilizing Low-Carbon Emission Fuels and Raw Materials: A Review," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
More about this item
Keywords
life cycle; impact assessment; recycled material; geopolymer concrete; sustainability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13515-:d:696756. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.