IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p1054-d315556.html
   My bibliography  Save this article

Sustainability of Reinforced Concrete Beams with/without BF Influenced by Cracking Capacity and Chloride Diffusion

Author

Listed:
  • Yurong Zhang

    (College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
    School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Chaojun Mao

    (College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China)

  • Jiandong Wang

    (College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China)

  • Yanhong Gao

    (College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China)

  • Junzhi Zhang

    (College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
    Key Laboratory of Civil Engineering Structure & Disaster Prevention and Mitigation Technology of Zhejiang Province, Hangzhou 310014, China)

Abstract

Concrete’s production causes pronounced environmental impacts. It is confirmed that adding basalt fiber (BF) into concrete can improve the mechanical properties and reduce the chloride diffusion coefficient of concrete. Moreover, research on the environmental impact of BF and its application in concrete has gradually emerged in recent years. However, there is little research on the chloride diffusivity of concrete structures with BF under the coupling interaction of external loads and chloride action. Therefore, at first, six beams were cast to obtain the depth-dependent chloride diffusivity of concrete under the coupling interaction of chloride penetration and 50% and 80% of the cracking capacity. Then, a functional unit ( FU ) combining durability, cracking capacity and volume was proposed to evaluate the sustainability of the concrete structure. In addition, three extra FU s (volume, considering volume and cracking capacity simultaneously and considering volume, cracking capacity and durability simultaneously) were also proposed and compared with the first FU . Results indicate that, regardless of the applied load level, the average chloride diffusion coefficient of a reinforced concrete (RC) beam with BF is larger than that of an ordinary RC beam. Moreover, the sorting of life cycle assessment (LCA) results will vary significantly with the different preset functional units. When taking the cracking capacity into consideration, adding BF into concrete is a suitable solution to improve the sustainability of RC beams.

Suggested Citation

  • Yurong Zhang & Chaojun Mao & Jiandong Wang & Yanhong Gao & Junzhi Zhang, 2020. "Sustainability of Reinforced Concrete Beams with/without BF Influenced by Cracking Capacity and Chloride Diffusion," Sustainability, MDPI, vol. 12(3), pages 1-12, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1054-:d:315556
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/1054/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/1054/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hendrik G. van Oss & Amy C. Padovani, 2003. "Cement Manufacture and the Environment Part II: Environmental Challenges and Opportunities," Journal of Industrial Ecology, Yale University, vol. 7(1), pages 93-126, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
    2. Meredith Fowlie & Mar Reguant & Stephen P. Ryan, 2016. "Market-Based Emissions Regulation and Industry Dynamics," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 249-302.
    3. Navia, R. & Rivela, B. & Lorber, K.E. & Méndez, R., 2006. "Recycling contaminated soil as alternative raw material in cement facilities: Life cycle assessment," Resources, Conservation & Recycling, Elsevier, vol. 48(4), pages 339-356.
    4. Atmaca, Adem & Kanoglu, Mehmet, 2012. "Reducing energy consumption of a raw mill in cement industry," Energy, Elsevier, vol. 42(1), pages 261-269.
    5. Reijnders, L., 2005. "Disposal, uses and treatments of combustion ashes: a review," Resources, Conservation & Recycling, Elsevier, vol. 43(3), pages 313-336.
    6. Woodward, Rachel & Duffy, Noel, 2011. "Cement and concrete flow analysis in a rapidly expanding economy: Ireland as a case study," Resources, Conservation & Recycling, Elsevier, vol. 55(4), pages 448-455.
    7. Azad Rahman & Mohammad G. Rasul & M.M.K. Khan & Subhash C. Sharma, 2017. "Assessment of Energy Performance and Emission Control Using Alternative Fuels in Cement Industry through a Process Model," Energies, MDPI, vol. 10(12), pages 1-17, December.
    8. Peter Holmes & Tom Reilly & Jim Rollo, 2011. "Border carbon adjustments and the potential for protectionism," Climate Policy, Taylor & Francis Journals, vol. 11(2), pages 883-900, March.
    9. Boughton, Bob, 2007. "Evaluation of shredder residue as cement manufacturing feedstock," Resources, Conservation & Recycling, Elsevier, vol. 51(3), pages 621-642.
    10. Jeffrey T. Macher & Nathan H. Miller & Matthew Osborne, 2021. "Finding Mr. Schumpeter: technology adoption in the cement industry," RAND Journal of Economics, RAND Corporation, vol. 52(1), pages 78-99, March.
    11. Muhammad Mubashir Ajmal & Asad Ullah Qazi & Ali Ahmed & Ubaid Ahmad Mughal & Safeer Abbas & Syed Minhaj Saleem Kazmi & Muhammad Junaid Munir, 2023. "Structural Performance of Energy Efficient Geopolymer Concrete Confined Masonry: An Approach towards Decarbonization," Energies, MDPI, vol. 16(8), pages 1-27, April.
    12. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    13. Beatrice Castellani & Elena Morini & Mirko Filipponi & Andrea Nicolini & Massimo Palombo & Franco Cotana & Federico Rossi, 2014. "Comparative Analysis of Monitoring Devices for Particulate Content in Exhaust Gases," Sustainability, MDPI, vol. 6(7), pages 1-21, July.
    14. Hashimoto, Shizuka & Fujita, Tsuyoshi & Geng, Yong & Nagasawa, Emiri, 2010. "Realizing CO2 emission reduction through industrial symbiosis: A cement production case study for Kawasaki," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 704-710.
    15. Ali Naqi & Jeong Gook Jang, 2019. "Recent Progress in Green Cement Technology Utilizing Low-Carbon Emission Fuels and Raw Materials: A Review," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    16. Lahiba Imtiaz & Sardar Kashif-ur-Rehman & Wesam Salah Alaloul & Kashif Nazir & Muhammad Faisal Javed & Fahid Aslam & Muhammad Ali Musarat, 2021. "Life Cycle Impact Assessment of Recycled Aggregate Concrete, Geopolymer Concrete, and Recycled Aggregate-Based Geopolymer Concrete," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    17. Wesseling, Joeri H. & van der Vooren , Alexander, 2016. "Lock-in of mature innovation systems, The transformation toward clean concrete in the Netherlands," Papers in Innovation Studies 2016/17, Lund University, CIRCLE - Centre for Innovation Research.
    18. Dodoo, Ambrose & Gustavsson, Leif & Sathre, Roger, 2009. "Carbon implications of end-of-life management of building materials," Resources, Conservation & Recycling, Elsevier, vol. 53(5), pages 276-286.
    19. Mack-Vergara, Yazmin L. & John, Vanderley M., 2017. "Life cycle water inventory in concrete production—A review," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 227-250.
    20. Nassar, Roz-Ud-Din & Soroushian, Parviz & Ghebrab, Tewodros, 2013. "Field investigation of high-volume fly ash pavement concrete," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 78-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1054-:d:315556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.