IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v48y2006i4p339-356.html
   My bibliography  Save this article

Recycling contaminated soil as alternative raw material in cement facilities: Life cycle assessment

Author

Listed:
  • Navia, R.
  • Rivela, B.
  • Lorber, K.E.
  • Méndez, R.

Abstract

Volcanic soil can be used to remove metals from wastewaters. Once used, it is disposed in landfills. The utilization of this material in the cement industry as an alternative raw material was evaluated using life cycle assessment (LCA) methodology. This possibility has been studied from an environmental point of view in a Chilean cement facility, representative of the current operation state of art, including both technical and economic analysis. Two scenarios were compared: Scenario 1, which corresponds to the existing cement production process, and Scenario 2, which represents cement production using spent volcanic soil. With the exception of the categories of carcinogens (C) and minerals (M), the comparative results are favourable to Scenario 2, specially regarding to the category of ecotoxicity (E), mainly due to the avoided landfilling emissions of the volcanic soil. When considering the damage assessment, damage to human health (HH), ecosystem quality (EQ) and resources (R) are lower in Scenario 2. In addition, sensitivity analyses were performed to study the influence of particular parameters (i.e., transport of spent volcanic soil, CO2 emissions from the clinkerization process and heavy metals leaching from the spent volcanic soil) on the results of the assessment. The use of alternative raw materials (in this case, spent volcanic soil), which present the advantage to be wastes from other technical systems, appear to allow the development of cement production in a more sustainable way, slightly improving the economy of the process. The spent volcanic soil can be treated with zero cost for the wastewater treatment plant with savings of 0.23€ for each tonne of clinker production. Establishing a sound management way for the spent volcanic soil could foment its possible use as mineral adsorbent in industrial wastewater treatment facilities.

Suggested Citation

  • Navia, R. & Rivela, B. & Lorber, K.E. & Méndez, R., 2006. "Recycling contaminated soil as alternative raw material in cement facilities: Life cycle assessment," Resources, Conservation & Recycling, Elsevier, vol. 48(4), pages 339-356.
  • Handle: RePEc:eee:recore:v:48:y:2006:i:4:p:339-356
    DOI: 10.1016/j.resconrec.2006.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344906000206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2006.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hendrik G. van Oss & Amy C. Padovani, 2003. "Cement Manufacture and the Environment Part II: Environmental Challenges and Opportunities," Journal of Industrial Ecology, Yale University, vol. 7(1), pages 93-126, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moraes, Carlos Alberto Mendes & Kieling, Amanda Gonçalves & Caetano, Marcelo Oliveira & Gomes, Luciana Paulo, 2010. "Life cycle analysis (LCA) for the incorporation of rice husk ash in mortar coating," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1170-1176.
    2. Xiaoquan Gao & Cuiping Liao & Xiaoling Qi & Yulong Zhang, 2023. "A Scenario Simulation of Material Substitution in the Cement Industry under the Carbon Neutral Strategy: A Case Study of Guangdong," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    3. Cao, Zhi & Shen, Lei & Zhao, Jianan & Liu, Litao & Zhong, Shuai & Yang, Yan, 2016. "Modeling the dynamic mechanism between cement CO2 emissions and clinker quality to realize low-carbon cement," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 116-126.
    4. Kubilay Kaptan & Sandra Cunha & José Aguiar, 2024. "A Review: Construction and Demolition Waste as a Novel Source for CO 2 Reduction in Portland Cement Production for Concrete," Sustainability, MDPI, vol. 16(2), pages 1-50, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
    2. Meredith Fowlie & Mar Reguant & Stephen P. Ryan, 2016. "Market-Based Emissions Regulation and Industry Dynamics," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 249-302.
    3. Atmaca, Adem & Kanoglu, Mehmet, 2012. "Reducing energy consumption of a raw mill in cement industry," Energy, Elsevier, vol. 42(1), pages 261-269.
    4. Reijnders, L., 2005. "Disposal, uses and treatments of combustion ashes: a review," Resources, Conservation & Recycling, Elsevier, vol. 43(3), pages 313-336.
    5. Woodward, Rachel & Duffy, Noel, 2011. "Cement and concrete flow analysis in a rapidly expanding economy: Ireland as a case study," Resources, Conservation & Recycling, Elsevier, vol. 55(4), pages 448-455.
    6. Azad Rahman & Mohammad G. Rasul & M.M.K. Khan & Subhash C. Sharma, 2017. "Assessment of Energy Performance and Emission Control Using Alternative Fuels in Cement Industry through a Process Model," Energies, MDPI, vol. 10(12), pages 1-17, December.
    7. Peter Holmes & Tom Reilly & Jim Rollo, 2011. "Border carbon adjustments and the potential for protectionism," Climate Policy, Taylor & Francis Journals, vol. 11(2), pages 883-900, March.
    8. Boughton, Bob, 2007. "Evaluation of shredder residue as cement manufacturing feedstock," Resources, Conservation & Recycling, Elsevier, vol. 51(3), pages 621-642.
    9. Jeffrey T. Macher & Nathan H. Miller & Matthew Osborne, 2021. "Finding Mr. Schumpeter: technology adoption in the cement industry," RAND Journal of Economics, RAND Corporation, vol. 52(1), pages 78-99, March.
    10. Muhammad Mubashir Ajmal & Asad Ullah Qazi & Ali Ahmed & Ubaid Ahmad Mughal & Safeer Abbas & Syed Minhaj Saleem Kazmi & Muhammad Junaid Munir, 2023. "Structural Performance of Energy Efficient Geopolymer Concrete Confined Masonry: An Approach towards Decarbonization," Energies, MDPI, vol. 16(8), pages 1-27, April.
    11. Yurong Zhang & Chaojun Mao & Jiandong Wang & Yanhong Gao & Junzhi Zhang, 2020. "Sustainability of Reinforced Concrete Beams with/without BF Influenced by Cracking Capacity and Chloride Diffusion," Sustainability, MDPI, vol. 12(3), pages 1-12, February.
    12. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    13. Beatrice Castellani & Elena Morini & Mirko Filipponi & Andrea Nicolini & Massimo Palombo & Franco Cotana & Federico Rossi, 2014. "Comparative Analysis of Monitoring Devices for Particulate Content in Exhaust Gases," Sustainability, MDPI, vol. 6(7), pages 1-21, July.
    14. Hashimoto, Shizuka & Fujita, Tsuyoshi & Geng, Yong & Nagasawa, Emiri, 2010. "Realizing CO2 emission reduction through industrial symbiosis: A cement production case study for Kawasaki," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 704-710.
    15. Ali Naqi & Jeong Gook Jang, 2019. "Recent Progress in Green Cement Technology Utilizing Low-Carbon Emission Fuels and Raw Materials: A Review," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    16. Lahiba Imtiaz & Sardar Kashif-ur-Rehman & Wesam Salah Alaloul & Kashif Nazir & Muhammad Faisal Javed & Fahid Aslam & Muhammad Ali Musarat, 2021. "Life Cycle Impact Assessment of Recycled Aggregate Concrete, Geopolymer Concrete, and Recycled Aggregate-Based Geopolymer Concrete," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    17. Wesseling, Joeri H. & van der Vooren , Alexander, 2016. "Lock-in of mature innovation systems, The transformation toward clean concrete in the Netherlands," Papers in Innovation Studies 2016/17, Lund University, CIRCLE - Centre for Innovation Research.
    18. Dodoo, Ambrose & Gustavsson, Leif & Sathre, Roger, 2009. "Carbon implications of end-of-life management of building materials," Resources, Conservation & Recycling, Elsevier, vol. 53(5), pages 276-286.
    19. Mack-Vergara, Yazmin L. & John, Vanderley M., 2017. "Life cycle water inventory in concrete production—A review," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 227-250.
    20. Nassar, Roz-Ud-Din & Soroushian, Parviz & Ghebrab, Tewodros, 2013. "Field investigation of high-volume fly ash pavement concrete," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 78-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:48:y:2006:i:4:p:339-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.