IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p1996-d121186.html
   My bibliography  Save this article

Assessment of Energy Performance and Emission Control Using Alternative Fuels in Cement Industry through a Process Model

Author

Listed:
  • Azad Rahman

    (School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702, Australia)

  • Mohammad G. Rasul

    (School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702, Australia)

  • M.M.K. Khan

    (School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702, Australia)

  • Subhash C. Sharma

    (School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702, Australia)

Abstract

Cement manufacturing is one of the most energy intensive processes and is accountable for substantial pollutant emissions. Increasing energy costs compel stakeholders and researchers to search for alternative options to improve energy performance and reduce CO 2 emissions. Alternative fuels offer a realistic solution towards the reduction of the usage of fossil fuels and the mitigation of pollutant emissions. This paper developed a process model of a precalciner kiln system in the cement industry using Aspen Plus software to simulate the effect of five alternative fuels on pollutant emissions and energy performance. The alternatives fuels used were tyre, municipal solid waste (MSW), meat and bone meal (MBM), plastic waste and sugarcane bagasse. The model was developed on the basis of energy and mass balance of the system and was validated against data from a reference cement plant. This study also investigated the effect of these alternative fuels on the quality of the clinker. The results indicated that up to a 4.4% reduction in CO 2 emissions and up to a 6.4% reduction in thermal energy requirement could be achieved using these alternative fuels with 20% mix in coal. It was also found that the alternative fuels had minimum influence on the clinker quality except in the case of MSW. Overall, MBM was found to be a better option as it is capable on reducing energy requirement and CO 2 emissions more than others. The outcomes of the study offer better understanding of the effects of solid alternative fuels to achieve higher energy performance and on mitigating pollutant emissions in cement industry.

Suggested Citation

  • Azad Rahman & Mohammad G. Rasul & M.M.K. Khan & Subhash C. Sharma, 2017. "Assessment of Energy Performance and Emission Control Using Alternative Fuels in Cement Industry through a Process Model," Energies, MDPI, vol. 10(12), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1996-:d:121186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/1996/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/1996/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hendrik G. van Oss & Amy C. Padovani, 2002. "Cement Manufacture and the Environment: Part I: Chemistry and Technology," Journal of Industrial Ecology, Yale University, vol. 6(1), pages 89-105, January.
    2. Hendrik G. van Oss & Amy C. Padovani, 2003. "Cement Manufacture and the Environment Part II: Environmental Challenges and Opportunities," Journal of Industrial Ecology, Yale University, vol. 7(1), pages 93-126, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kusuma, Ravi Teja & Hiremath, Rahul B. & Rajesh, Pachimatla & Kumar, Bimlesh & Renukappa, Suresh, 2022. "Sustainable transition towards biomass-based cement industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    2. Marcin Jewiarz & Krzysztof Mudryk & Marek Wróbel & Jarosław Frączek & Krzysztof Dziedzic, 2020. "Parameters Affecting RDF-Based Pellet Quality," Energies, MDPI, vol. 13(4), pages 1-17, February.
    3. Ana María Castañón & Lluís Sanmiquel & Marc Bascompta & Antonio Vega y de la Fuente & Víctor Contreras & Fernando Gómez-Fernández, 2021. "Used Tires as Fuel in Clinker Production: Economic and Environmental Implications," Sustainability, MDPI, vol. 13(18), pages 1-13, September.
    4. Xing Tian & Jian Yang & Zhigang Guo & Qiuwang Wang & Bengt Sunden, 2020. "Numerical Study of Heat Transfer in Gravity-Driven Particle Flow around Tubes with Different Shapes," Energies, MDPI, vol. 13(8), pages 1-15, April.
    5. Sung-Hoon Kang & Yang-Hee Kwon & Juhyuk Moon, 2019. "Quantitative Analysis of CO 2 Uptake and Mechanical Properties of Air Lime-Based Materials," Energies, MDPI, vol. 12(15), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woodward, Rachel & Duffy, Noel, 2011. "Cement and concrete flow analysis in a rapidly expanding economy: Ireland as a case study," Resources, Conservation & Recycling, Elsevier, vol. 55(4), pages 448-455.
    2. Boughton, Bob, 2007. "Evaluation of shredder residue as cement manufacturing feedstock," Resources, Conservation & Recycling, Elsevier, vol. 51(3), pages 621-642.
    3. Hashimoto, Shizuka & Fujita, Tsuyoshi & Geng, Yong & Nagasawa, Emiri, 2010. "Realizing CO2 emission reduction through industrial symbiosis: A cement production case study for Kawasaki," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 704-710.
    4. Boughton, Bob & Horvath, Arpad, 2006. "Environmental assessment of shredder residue management," Resources, Conservation & Recycling, Elsevier, vol. 47(1), pages 1-25.
    5. Nuno Cristelo & Jhonathan Rivera & Tiago Miranda & Ana Fernández-Jiménez, 2021. "Stabilisation of a Plastic Soil with Alkali Activated Cements Developed from Industrial Wastes," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    6. Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
    7. Meredith Fowlie & Mar Reguant & Stephen P. Ryan, 2016. "Market-Based Emissions Regulation and Industry Dynamics," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 249-302.
    8. Navia, R. & Rivela, B. & Lorber, K.E. & Méndez, R., 2006. "Recycling contaminated soil as alternative raw material in cement facilities: Life cycle assessment," Resources, Conservation & Recycling, Elsevier, vol. 48(4), pages 339-356.
    9. Atmaca, Adem & Kanoglu, Mehmet, 2012. "Reducing energy consumption of a raw mill in cement industry," Energy, Elsevier, vol. 42(1), pages 261-269.
    10. Reijnders, L., 2005. "Disposal, uses and treatments of combustion ashes: a review," Resources, Conservation & Recycling, Elsevier, vol. 43(3), pages 313-336.
    11. Ying-Liang Chen & Juu-En Chang & Ming-Sheng Ko, 2017. "Reusing Desulfurization Slag in Cement Clinker Production and the Influence on the Formation of Clinker Phases," Sustainability, MDPI, vol. 9(9), pages 1-14, September.
    12. Cao, Zhi & Shen, Lei & Zhao, Jianan & Liu, Litao & Zhong, Shuai & Yang, Yan, 2016. "Modeling the dynamic mechanism between cement CO2 emissions and clinker quality to realize low-carbon cement," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 116-126.
    13. Jean Kabongo & Olivier Boiral, 2011. "Creating Value with Wastes: A Model and Typology of Sustainability Within Firms," Business Strategy and the Environment, Wiley Blackwell, vol. 20(7), pages 441-455, November.
    14. Peter Holmes & Tom Reilly & Jim Rollo, 2011. "Border carbon adjustments and the potential for protectionism," Climate Policy, Taylor & Francis Journals, vol. 11(2), pages 883-900, March.
    15. Jeffrey T. Macher & Nathan H. Miller & Matthew Osborne, 2021. "Finding Mr. Schumpeter: technology adoption in the cement industry," RAND Journal of Economics, RAND Corporation, vol. 52(1), pages 78-99, March.
    16. Muhammad Mubashir Ajmal & Asad Ullah Qazi & Ali Ahmed & Ubaid Ahmad Mughal & Safeer Abbas & Syed Minhaj Saleem Kazmi & Muhammad Junaid Munir, 2023. "Structural Performance of Energy Efficient Geopolymer Concrete Confined Masonry: An Approach towards Decarbonization," Energies, MDPI, vol. 16(8), pages 1-27, April.
    17. Yurong Zhang & Chaojun Mao & Jiandong Wang & Yanhong Gao & Junzhi Zhang, 2020. "Sustainability of Reinforced Concrete Beams with/without BF Influenced by Cracking Capacity and Chloride Diffusion," Sustainability, MDPI, vol. 12(3), pages 1-12, February.
    18. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    19. Fang Zhang & Hong Fang & Junjie Wu & Damian Ward, 2016. "Environmental Efficiency Analysis of Listed Cement Enterprises in China," Sustainability, MDPI, vol. 8(5), pages 1-19, May.
    20. Beatrice Castellani & Elena Morini & Mirko Filipponi & Andrea Nicolini & Massimo Palombo & Franco Cotana & Federico Rossi, 2014. "Comparative Analysis of Monitoring Devices for Particulate Content in Exhaust Gases," Sustainability, MDPI, vol. 6(7), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1996-:d:121186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.