IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11625-d661361.html
   My bibliography  Save this article

Circular Carbon Economy (CCE): A Way to Invest CO 2 and Protect the Environment, a Review

Author

Listed:
  • Latifah M. Alsarhan

    (Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia)

  • Alhanouf S. Alayyar

    (Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia)

  • Naif B. Alqahtani

    (King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia)

  • Nezar H. Khdary

    (King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia)

Abstract

Increased levels of carbon dioxide have revolutionised the Earth; higher temperatures, melting icecaps, and flooding are now more prevalent. Fortunately, renewable energy mitigates this problem by making up 20% of human energy needs. However, from a “green environment” perspective, can carbon dioxide emissions in the atmosphere be reduced and eliminated? The carbon economic circle is an ideal solution to this problem, as it enables us to store, use, and remove carbon dioxide. This research introduces the circular carbon economy (CCE) and addresses its economic importance. Additionally, the paper discusses carbon capture and storage (CCS), and the utilisation of CO 2 . Furthermore, it explains current technologies and their future applications on environmental impact, CO 2 capture, utilisation, and storage (CCUS). Various opinions on the best way to achieve zero carbon emissions and on CO 2 applications and their economic impact are also discussed. The circular carbon economy can be achieved through a highly transparent global administration that is supportive of advanced technologies that contribute to the efficient utilisation of energy sources. This global administration must also provide facilities to modernise and develop factories and power stations, based on emission-reducing technologies. Monitoring emissions in countries through a global monitoring network system, based on actual field measurements, linked to a worldwide database allows all stakeholders to track the change in greenhouse gas emissions. The process of sequestering carbon dioxide in the ocean is affected by the support for technologies and industries that adopt the principle of carbon recycling in order to maintain the balance. This includes supporting initiatives that contribute to increasing vegetation cover and preserving oceans from pollutants, especially chemicals and radioactive pollutants, which will undoubtedly affect the process of sequestering carbon dioxide in the oceans, and this will contribute significantly to maintaining carbon dioxide at acceptable levels.

Suggested Citation

  • Latifah M. Alsarhan & Alhanouf S. Alayyar & Naif B. Alqahtani & Nezar H. Khdary, 2021. "Circular Carbon Economy (CCE): A Way to Invest CO 2 and Protect the Environment, a Review," Sustainability, MDPI, vol. 13(21), pages 1-25, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11625-:d:661361
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11625/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11625/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farajzadeh, R. & Eftekhari, A.A. & Dafnomilis, G. & Lake, L.W. & Bruining, J., 2020. "On the sustainability of CO2 storage through CO2 – Enhanced oil recovery," Applied Energy, Elsevier, vol. 261(C).
    2. Song, Chunfeng & Liu, Qingling & Deng, Shuai & Li, Hailong & Kitamura, Yutaka, 2019. "Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 265-278.
    3. Matthew Langholtz & Ingrid Busch & Abishek Kasturi & Michael R. Hilliard & Joanna McFarlane & Costas Tsouris & Srijib Mukherjee & Olufemi A. Omitaomu & Susan M. Kotikot & Melissa R. Allen-Dumas & Chri, 2020. "The Economic Accessibility of CO 2 Sequestration through Bioenergy with Carbon Capture and Storage (BECCS) in the US," Land, MDPI, vol. 9(9), pages 1-24, August.
    4. Deng Jie Long & Li Tang, 2021. "The impact of socio-economic institutional change on agricultural carbon dioxide emission reduction in China," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-14, May.
    5. Meunier, Nicolas & Chauvy, Remi & Mouhoubi, Seloua & Thomas, Diane & De Weireld, Guy, 2020. "Alternative production of methanol from industrial CO2," Renewable Energy, Elsevier, vol. 146(C), pages 1192-1203.
    6. Korhonen, Jouni & Honkasalo, Antero & Seppälä, Jyri, 2018. "Circular Economy: The Concept and its Limitations," Ecological Economics, Elsevier, vol. 143(C), pages 37-46.
    7. Lars Ingolf Eide & Melissa Batum & Tim Dixon & Zabia Elamin & Arne Graue & Sveinung Hagen & Susan Hovorka & Bamshad Nazarian & Pål Helge Nøkleby & Geir Inge Olsen & Philip Ringrose & Raphael Augusto M, 2019. "Enabling Large-Scale Carbon Capture, Utilisation, and Storage (CCUS) Using Offshore Carbon Dioxide (CO 2 ) Infrastructure Developments—A Review," Energies, MDPI, vol. 12(10), pages 1-21, May.
    8. Zhang, Ning & Duan, Huabo & Miller, Travis R. & Tam, Vivian W.Y. & Liu, Gang & Zuo, Jian, 2020. "Mitigation of carbon dioxide by accelerated sequestration in concrete debris," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    9. Jakovac, Catarina C. & Latawiec, Agnieszka Ewa & Lacerda, Eduardo & Leite Lucas, Isabella & Korys, Katarzyna Anna & Iribarrem, Alvaro & Malaguti, Gustavo Abreu & Turner, R. Kerry & Luisetti, Tiziana &, 2020. "Costs and Carbon Benefits of Mangrove Conservation and Restoration: A Global Analysis," Ecological Economics, Elsevier, vol. 176(C).
    10. Lena Mikhelkis & Venkatesh Govindarajan, 2020. "Techno-Economic and Partial Environmental Analysis of Carbon Capture and Storage (CCS) and Carbon Capture, Utilization, and Storage (CCU/S): Case Study from Proposed Waste-Fed District-Heating Inciner," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
    11. Santori, Giulio & Charalambous, Charithea & Ferrari, Maria-Chiara & Brandani, Stefano, 2018. "Adsorption artificial tree for atmospheric carbon dioxide capture, purification and compression," Energy, Elsevier, vol. 162(C), pages 1158-1168.
    12. Rizos, Vasileios & Egenhofer, Christian & Elkerbout, Milan, 2019. "Circular economy for climate neutrality: Setting the priorities for the EU," CEPS Papers 25584, Centre for European Policy Studies.
    13. Vitor H. F. Gomes & Ima C. G. Vieira & Rafael P. Salomão & Hans ter Steege, 2019. "Amazonian tree species threatened by deforestation and climate change," Nature Climate Change, Nature, vol. 9(7), pages 547-553, July.
    14. Ali Mostafaeipour & Seyyed Jalaladdin Hosseini Dehshiri & Seyyed Shahabaddin Hosseini Dehshiri & Mehdi Jahangiri & Kuaanan Techato, 2020. "A Thorough Analysis of Potential Geothermal Project Locations in Afghanistan," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    15. Maldal, T & Tappel, I.M, 2004. "CO2 underground storage for Snøhvit gas field development," Energy, Elsevier, vol. 29(9), pages 1403-1411.
    16. Victoria Kihlström & Jörgen Elbe, 2021. "Constructing Markets for Solar Energy—A Review of Literature about Market Barriers and Government Responses," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoi-Lam Lou & Shang-Hsien Hsieh, 2024. "Towards Zero: A Review on Strategies in Achieving Net-Zero-Energy and Net-Zero-Carbon Buildings," Sustainability, MDPI, vol. 16(11), pages 1-24, June.
    2. Yaozong Zhu & Yezhu Wang & Baohuan Zhou & Xiaoli Hu & Yundong Xie, 2023. "A Patent Bibliometric Analysis of Carbon Capture, Utilization, and Storage (CCUS) Technology," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    3. Shinsuke Murakami & Kotaro Shimizu & Chiharu Tokoro & Takashi Nakamura, 2022. "Role of Resource Circularity in Carbon Neutrality," Sustainability, MDPI, vol. 14(24), pages 1-13, December.
    4. Stephen Okyere & Jiaqi Yang & Charles Anum Adams, 2022. "Optimizing the Sustainable Multimodal Freight Transport and Logistics System Based on the Genetic Algorithm," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    5. Nadia Yusuf & Miltiadis D. Lytras, 2023. "Competitive Sustainability of Saudi Companies through Digitalization and the Circular Carbon Economy Model: A Bold Contribution to the Vision 2030 Agenda in Saudi Arabia," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    6. Karel Diéguez-Santana & Liliana B. Sarduy-Pereira & Neyfe Sablón-Cossío & Horacio Bautista-Santos & Fabiola Sánchez-Galván & Sebastiana del Monserrate Ruíz Cedeño, 2022. "Evaluation of the Circular Economy in a Pitahaya Agri-Food Chain," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    7. Griffiths, Steve & Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D. & Foley, Aoife M. & Bazilian, Morgan D. & Kim, Jinsoo & Uratani, Joao M., 2023. "Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    8. Zhengai Dong & Lichen Zhang & Houjian Li & Yanhui Gong & Yue Jiang & Qiumei Peng, 2022. "Knowledge Mapping and Institutional Prospects on Circular Carbon Economy Based on Scientometric Analysis," IJERPH, MDPI, vol. 19(19), pages 1-25, September.
    9. Aubaid Ullah & Nur Awanis Hashim & Mohamad Fairus Rabuni & Mohd Usman Mohd Junaidi, 2023. "A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency," Energies, MDPI, vol. 16(3), pages 1-35, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhengai Dong & Lichen Zhang & Houjian Li & Yanhui Gong & Yue Jiang & Qiumei Peng, 2022. "Knowledge Mapping and Institutional Prospects on Circular Carbon Economy Based on Scientometric Analysis," IJERPH, MDPI, vol. 19(19), pages 1-25, September.
    2. Grouiez, Pascal & Debref, Romain & Vivien, Franck-Dominique & Befort, Nicolas, 2023. "The complex relationships between non-food agriculture and the sustainable bioeconomy: The French case," Ecological Economics, Elsevier, vol. 214(C).
    3. Mohajan, Haradhan, 2021. "Cradle to Cradle is a Sustainable Economic Policy for the Better Future," MPRA Paper 111334, University Library of Munich, Germany, revised 10 Oct 2021.
    4. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    5. Bruno Michel Roman Pais Seles & Janaina Mascarenhas & Ana Beatriz Lopes de Sousa Jabbour & Adriana Hoffman Trevisan, 2022. "Smoothing the circular economy transition: The role of resources and capabilities enablers," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1814-1837, May.
    6. Davide Bruno & Marinella Ferrara & Felice D’Alessandro & Alberto Mandelli, 2022. "The Role of Design in the CE Transition of the Furniture Industry—The Case of the Italian Company Cassina," Sustainability, MDPI, vol. 14(15), pages 1-20, July.
    7. Monia Niero & Charlotte L. Jensen & Chiara Farné Fratini & Jens Dorland & Michael S. Jørgensen & Susse Georg, 2021. "Is life cycle assessment enough to address unintended side effects from Circular Economy initiatives?," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1111-1120, October.
    8. Francesca Gennari, 2023. "The transition towards a circular economy. A framework for SMEs," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(4), pages 1423-1457, December.
    9. Jaroslaw Golebiewski & Josu Takala & Oskar Juszczyk & Nina Drejerska, 2019. "Local contribution to circular economy. A case study of a Polish rural municipality," Economia agro-alimentare, FrancoAngeli Editore, vol. 21(3), pages 771-791.
    10. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    11. Song, Xueyi & Yuan, Junjie & Yang, Chen & Deng, Gaofeng & Wang, Zhichao & Gao, Jubao, 2023. "Carbon dioxide separation performance evaluation of amine-based versus choline-based deep eutectic solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    12. Millar, Neal & McLaughlin, Eoin & Börger, Tobias, 2019. "The Circular Economy: Swings and Roundabouts?," Ecological Economics, Elsevier, vol. 158(C), pages 11-19.
    13. Ali Mohammadi & G. Venkatesh & Maria Sandberg & Samieh Eskandari & Stephen Joseph & Karin Granström, 2020. "A Comprehensive Environmental Life Cycle Assessment of the Use of Hydrochar Pellets in Combined Heat and Power Plants," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
    14. D. D’Amato, 2021. "Sustainability Narratives as Transformative Solution Pathways: Zooming in on the Circular Economy," Circular Economy and Sustainability, Springer, vol. 1(1), pages 231-242, June.
    15. Łukasz Brzeziński & Adam Kolinski, 2024. "Challenges of the Green Transformation of Transport in Poland," Sustainability, MDPI, vol. 16(8), pages 1-34, April.
    16. Zhang, Kai & Lau, Hon Chung & Liu, Shuyang & Li, Hangyu, 2022. "Carbon capture and storage in the coastal region of China between Shanghai and Hainan," Energy, Elsevier, vol. 247(C).
    17. Baoting Peng & Xin Shen, 2024. "Does Environmental Regulation Affect Circular Economy Performance? Evidence from China," Sustainability, MDPI, vol. 16(11), pages 1-19, May.
    18. Nikos Chatzistamoulou & Phoebe Koundouri, 2020. "The Economics of Sustainable Development," DEOS Working Papers 2005, Athens University of Economics and Business.
    19. Halkos, George & Managi, Shunsuke, 2023. "New developments in the disciplines of environmental and resource economics," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 513-522.
    20. Yu Hao & Yingting Wang & Qiuwei Wu & Shiwei Sun & Weilu Wang & Menglin Cui, 2020. "What affects residents' participation in the circular economy for sustainable development? Evidence from China," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1251-1268, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11625-:d:661361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.