IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp1192-1203.html
   My bibliography  Save this article

Alternative production of methanol from industrial CO2

Author

Listed:
  • Meunier, Nicolas
  • Chauvy, Remi
  • Mouhoubi, Seloua
  • Thomas, Diane
  • De Weireld, Guy

Abstract

Carbon dioxide valorization into value added products have become subject to much study to reduce industrial CO2 emissions and fossil energy resource consumption. In this context, the purpose of this study is to evaluate and highlight the interest of CO2 conversion into methanol through a complete techno-economic and environmental assessment of the entire process chain. The integrated process, successfully implemented in Aspen Plus®, is designed to treat the CO2 coming from a conventional cement plant. A MEA-based CO2 capture process is considered, and the captured CO2 is then directly sent to the conversion unit for its catalytic conversion. Consequently, combining the two units leads to relevant integrations, especially regarding the reuse of the heat provided by the exothermal methanol reactions for the regeneration of the CO2 capture solvent. An economic assessment is proposed to estimate the operational and investment costs, as well as the net present value, which demonstrates that the economic feasibility strongly depends on electricity and H2 production costs. A Life Cycle Analysis method is finally performed to identify the main environmental hotspots. The underlying process design offers a significant reduction in greenhouse gases (besides other categories) when compared to the conventional fossil production from natural gas.

Suggested Citation

  • Meunier, Nicolas & Chauvy, Remi & Mouhoubi, Seloua & Thomas, Diane & De Weireld, Guy, 2020. "Alternative production of methanol from industrial CO2," Renewable Energy, Elsevier, vol. 146(C), pages 1192-1203.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1192-1203
    DOI: 10.1016/j.renene.2019.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119310304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oh, Se-Young & Binns, Michael & Cho, Habin & Kim, Jin-Kuk, 2016. "Energy minimization of MEA-based CO2 capture process," Applied Energy, Elsevier, vol. 169(C), pages 353-362.
    2. Bruhn, Thomas & Naims, Henriette & Olfe-Kräutlein, Barbara, 2016. "Separating the debate on CO2 utilisation from carbon capture and storage," Environmental Science & Policy, Elsevier, vol. 60(C), pages 38-43.
    3. Pérez-Fortes, Mar & Schöneberger, Jan C. & Boulamanti, Aikaterini & Tzimas, Evangelos, 2016. "Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment," Applied Energy, Elsevier, vol. 161(C), pages 718-732.
    4. Li, Bao-Hong & Zhang, Nan & Smith, Robin, 2016. "Simulation and analysis of CO2 capture process with aqueous monoethanolamine solution," Applied Energy, Elsevier, vol. 161(C), pages 707-717.
    5. Niall Mac Dowell & Paul S. Fennell & Nilay Shah & Geoffrey C. Maitland, 2017. "The role of CO2 capture and utilization in mitigating climate change," Nature Climate Change, Nature, vol. 7(4), pages 243-249, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Kappis & Joan Papavasiliou & George Avgouropoulos, 2021. "Methanol Reforming Processes for Fuel Cell Applications," Energies, MDPI, vol. 14(24), pages 1-30, December.
    2. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    3. Galusnyak, Stefan Cristian & Petrescu, Letitia & Chisalita, Dora Andreea & Cormos, Calin-Cristian, 2022. "Life cycle assessment of methanol production and conversion into various chemical intermediates and products," Energy, Elsevier, vol. 259(C).
    4. Kim, Heehyang & Kim, Ayeon & Byun, Manhee & Lim, Hankwon, 2021. "Comparative feasibility studies of H2 supply scenarios for methanol as a carbon-neutral H2 carrier at various scales and distances," Renewable Energy, Elsevier, vol. 180(C), pages 552-559.
    5. Harris, Kylee & Grim, R. Gary & Huang, Zhe & Tao, Ling, 2021. "A comparative techno-economic analysis of renewable methanol synthesis from biomass and CO2: Opportunities and barriers to commercialization," Applied Energy, Elsevier, vol. 303(C).
    6. Yusra Muazzam & Muhammad Yousaf & Muhammad Zaman & Ali Elkamel & Asif Mahmood & Muhammad Rizwan & Muhammad Adnan, 2022. "Thermo-Economic Analysis of Integrated Hydrogen, Methanol and Dimethyl Ether Production Using Water Electrolyzed Hydrogen," Resources, MDPI, vol. 11(10), pages 1-27, September.
    7. Marcelo Azevedo Benetti & Florin Iov, 2023. "A Novel Scheme to Allocate the Green Energy Transportation Costs—Application to Carbon Captured and Hydrogen," Energies, MDPI, vol. 16(7), pages 1-20, March.
    8. Ryoo, Seung Gul & Jung, Han Sol & Kim, MinJae & Kang, Yong Tae, 2021. "Bridge to zero-emission: Life cycle assessment of CO2–methanol conversion process and energy optimization," Energy, Elsevier, vol. 229(C).
    9. Wang, Yadong & Yu, Haoran & Hu, Qing & Huang, Yanpeng & Wang, Ximing & Wang, Yuanhao & Wang, Fenghuan, 2023. "Application of microimpinging stream reactor coupled with ultrasound in Cu/CeZrOx solid solution catalyst preparation for CO2 hydrogenation to methanol," Renewable Energy, Elsevier, vol. 202(C), pages 834-843.
    10. Zhang, Zhien & Pan, Shu-Yuan & Li, Hao & Cai, Jianchao & Olabi, Abdul Ghani & Anthony, Edward John & Manovic, Vasilije, 2020. "Recent advances in carbon dioxide utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    11. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    12. Mancusi, E. & Bareschino, P. & Brachi, P. & Coppola, A. & Ruoppolo, G. & Urciuolo, M. & Pepe, F., 2021. "Feasibility of an integrated biomass-based CLC combustion and a renewable-energy-based methanol production systems," Renewable Energy, Elsevier, vol. 179(C), pages 29-36.
    13. Byun, Manhee & Kim, Heehyang & Lee, Hyunjun & Lim, Dongjun & Lim, Hankwon, 2022. "Conceptual design for methanol steam reforming in serial packed-bed reactors and membrane filters: Economic and environmental perspectives," Energy, Elsevier, vol. 241(C).
    14. Simon Pratschner & Pavel Skopec & Jan Hrdlicka & Franz Winter, 2021. "Power-to-Green Methanol via CO 2 Hydrogenation—A Concept Study including Oxyfuel Fluidized Bed Combustion of Biomass," Energies, MDPI, vol. 14(15), pages 1-33, July.
    15. Bakhtyari, Ali & Bardool, Roghayeh & Rahimpour, Mohammad Reza & Iulianelli, Adolfo, 2021. "Dehydration of bio-alcohols in an enhanced membrane-assisted reactor: A rigorous sensitivity analysis and multi-objective optimization," Renewable Energy, Elsevier, vol. 177(C), pages 519-543.
    16. Hosseinzadeh-Bandbafha, Homa & Tan, Yie Hua & Kansedo, Jibrail & Mubarak, N.M. & Liew, Rock Keey & Yek, Peter Nai Yuh & Aghbashlo, Mortaza & Ng, Hui Suan & Chong, William Woei Fong & Lam, Su Shiung & , 2023. "Assessing biodiesel production using palm kernel shell-derived sulfonated magnetic biochar from the life cycle assessment perspective," Energy, Elsevier, vol. 282(C).
    17. Latifah M. Alsarhan & Alhanouf S. Alayyar & Naif B. Alqahtani & Nezar H. Khdary, 2021. "Circular Carbon Economy (CCE): A Way to Invest CO 2 and Protect the Environment, a Review," Sustainability, MDPI, vol. 13(21), pages 1-25, October.
    18. Maqbool, Wahab & Kwon, Yuree & Im, Mintaek & An, Jinjoo, 2024. "Toward sustainable recycled methanol production from CO2 and steel by-product gases in South Korea; process design and assessment," Energy, Elsevier, vol. 301(C).
    19. Zhang, Zhiwei & Vo, Dat-Nguyen & Nguyen, Tuan B.H. & Sun, Jinsheng & Lee, Chang-Ha, 2024. "Advanced process integration and machine learning-based optimization to enhance techno-economic-environmental performance of CO2 capture and conversion to methanol," Energy, Elsevier, vol. 293(C).
    20. Gustafsson, Marcus & Cordova, Stephanie S. & Svensson, Niclas & Eklund, Mats, 2024. "Climate performance of liquefied biomethane with carbon dioxide utilization or storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    21. Adnan, Muflih A. & Kibria, Md Golam, 2020. "Comparative techno-economic and life-cycle assessment of power-to-methanol synthesis pathways," Applied Energy, Elsevier, vol. 278(C).
    22. Kotowicz, Janusz & Węcel, Daniel & Kwilinski, Aleksy & Brzęczek, Mateusz, 2022. "Efficiency of the power-to-gas-to-liquid-to-power system based on green methanol," Applied Energy, Elsevier, vol. 314(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
    2. Ilkka Hannula & David M Reiner, 2017. "The race to solve the sustainable transport problem via carbon-neutral synthetic fuels and battery electric vehicles," Working Papers EPRG 1721, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Zhao, Bin & Liu, Fangzheng & Cui, Zheng & Liu, Changjun & Yue, Hairong & Tang, Siyang & Liu, Yingying & Lu, Houfang & Liang, Bin, 2017. "Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650MW power plant: Process improvement," Applied Energy, Elsevier, vol. 185(P1), pages 362-375.
    4. Madeddu, Claudio & Errico, Massimiliano & Baratti, Roberto, 2018. "Process analysis for the carbon dioxide chemical absorption–regeneration system," Applied Energy, Elsevier, vol. 215(C), pages 532-542.
    5. Lee, Woo-Sung & Kang, Jun-Ho & Lee, Jae-Cheol & Lee, Chang-Ha, 2020. "Enhancement of energy efficiency by exhaust gas recirculation with oxygen-rich combustion in a natural gas combined cycle with a carbon capture process," Energy, Elsevier, vol. 200(C).
    6. Arning, K. & Offermann-van Heek, J. & Linzenich, A. & Kaetelhoen, A. & Sternberg, A. & Bardow, A. & Ziefle, M., 2019. "Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany," Energy Policy, Elsevier, vol. 125(C), pages 235-249.
    7. Putta, Koteswara Rao & Tobiesen, Finn Andrew & Svendsen, Hallvard F. & Knuutila, Hanna K., 2017. "Applicability of enhancement factor models for CO2 absorption into aqueous MEA solutions," Applied Energy, Elsevier, vol. 206(C), pages 765-783.
    8. Pavel Tcvetkov, 2021. "Climate Policy Imbalance in the Energy Sector: Time to Focus on the Value of CO 2 Utilization," Energies, MDPI, vol. 14(2), pages 1-22, January.
    9. Al-Kalbani, Haitham & Xuan, Jin & García, Susana & Wang, Huizhi, 2016. "Comparative energetic assessment of methanol production from CO2: Chemical versus electrochemical process," Applied Energy, Elsevier, vol. 165(C), pages 1-13.
    10. Koytsoumpa, E.I. & Magiri – Skouloudi, D. & Karellas, S. & Kakaras, E., 2021. "Bioenergy with carbon capture and utilization: A review on the potential deployment towards a European circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Yi, Qun & Zhao, Yingjie & Huang, Yi & Wei, Guoqiang & Hao, Yanhong & Feng, Jie & Mohamed, Usama & Pourkashanian, Mohamed & Nimmo, William & Li, Wenying, 2018. "Life cycle energy-economic-CO2 emissions evaluation of biomass/coal, with and without CO2 capture and storage, in a pulverized fuel combustion power plant in the United Kingdom," Applied Energy, Elsevier, vol. 225(C), pages 258-272.
    12. Pereira, Luís M.C. & Llovell, Fèlix & Vega, Lourdes F., 2018. "Thermodynamic characterisation of aqueous alkanolamine and amine solutions for acid gas processing by transferable molecular models," Applied Energy, Elsevier, vol. 222(C), pages 687-703.
    13. Fernández-Dacosta, Cora & Shen, Li & Schakel, Wouter & Ramirez, Andrea & Kramer, Gert Jan, 2019. "Potential and challenges of low-carbon energy options: Comparative assessment of alternative fuels for the transport sector," Applied Energy, Elsevier, vol. 236(C), pages 590-606.
    14. Chauvy, Remi & Meunier, Nicolas & Thomas, Diane & De Weireld, Guy, 2019. "Selecting emerging CO2 utilization products for short- to mid-term deployment," Applied Energy, Elsevier, vol. 236(C), pages 662-680.
    15. Chen, Chao & Lu, Yangsiyu & Banares-Alcantara, Rene, 2019. "Direct and indirect electrification of chemical industry using methanol production as a case study," Applied Energy, Elsevier, vol. 243(C), pages 71-90.
    16. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Armah, Edward K. & Wilson, Uwemedimo N., 2021. "Advances and emerging techniques for energy recovery during absorptive CO2 capture: A review of process and non-process integration-based strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    17. Ravikumar, Dwarakanath & Keoleian, Gregory & Miller, Shelie, 2020. "The environmental opportunity cost of using renewable energy for carbon capture and utilization for methanol production," Applied Energy, Elsevier, vol. 279(C).
    18. Chuenphan, Thapanat & Yurata, Tarabordin & Sema, Teerawat & Chalermsinsuwan, Benjapon, 2022. "Techno-economic sensitivity analysis for optimization of carbon dioxide capture process by potassium carbonate solution," Energy, Elsevier, vol. 254(PA).
    19. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    20. Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1192-1203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.