IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3422-d520448.html
   My bibliography  Save this article

A Survey of Technologies and Recent Developments for Sustainable Smart Cycling

Author

Listed:
  • Franklin Oliveira

    (UEFS-PGCC, State University of Feira de Santana, Feira de Santana 44036-900, Brazil
    These authors contributed equally to this work.)

  • Dilan Nery

    (UEFS-PGCC, State University of Feira de Santana, Feira de Santana 44036-900, Brazil
    These authors contributed equally to this work.)

  • Daniel G. Costa

    (UEFS-DTEC, Department of Technology, State University of Feira de Santana, Feira de Santana 44036-900, Brazil
    These authors contributed equally to this work.)

  • Ivanovitch Silva

    (UFRN-DCA, Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
    These authors contributed equally to this work.)

  • Luciana Lima

    (UFRN-DDCA, Department of Demography and Actuarial Science, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
    These authors contributed equally to this work.)

Abstract

Among the problems resulted from the continuous urbanization process, inefficient urban mobility and high pollution levels have been complex challenges that have demanded a lot of public investments and research efforts. Recently, some alternative transportation means have been leveraged as sustainable options for such challenges, which has brought bicycles to a more relevant setting. Besides the sometimes obvious benefits of adopting bikes for transportation, technologies around the Internet of Things (IoT) paradigm have been advocated as important supportive tools to boost smart cycling initiatives. Actually, new technologies can be exploited to improve the efficiency of bike paths and parking spots, while reducing accidents and enhancing the cycling experience of the users. Therefore, in this highly vibrating scenario, this article facilitates the understating of current research trends and promising developments, surveying and classing recent works. Since there is a global interest for the promotion of cleaner and more sustainable solutions in large cities, this survey can be valuable when supporting new developments in this highly relevant research area.

Suggested Citation

  • Franklin Oliveira & Dilan Nery & Daniel G. Costa & Ivanovitch Silva & Luciana Lima, 2021. "A Survey of Technologies and Recent Developments for Sustainable Smart Cycling," Sustainability, MDPI, vol. 13(6), pages 1-28, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3422-:d:520448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3422/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3422/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pedro Plasencia-Lozano, 2021. "Evaluation of a New Urban Cycling Infrastructure in Caceres (Spain)," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    2. Steve O’Hern & Nora Estgfaeller, 2020. "A Scientometric Review of Powered Micromobility," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    3. Nikolaeva, Anna & te Brömmelstroet, Marco & Raven, Rob & Ranson, James, 2019. "Smart cycling futures: Charting a new terrain and moving towards a research agenda," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    4. Zhang, Yongping & Mi, Zhifu, 2018. "Environmental benefits of bike sharing: A big data-based analysis," Applied Energy, Elsevier, vol. 220(C), pages 296-301.
    5. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2015. "Analysing bicycle-sharing system user destination choice preferences: Chicago’s Divvy system," Journal of Transport Geography, Elsevier, vol. 44(C), pages 53-64.
    6. Fan Yang & Fan Ding & Xu Qu & Bin Ran, 2019. "Estimating Urban Shared-Bike Trips with Location-Based Social Networking Data," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    7. Shinn-Jou Lin & Guey-Shin Shyu & Wei-Ta Fang & Bai-You Cheng, 2020. "Using Multivariate Statistical Methods to Analyze High-Quality Bicycle Path Service Systems: A Case Study of Popular Bicycle Paths in Taiwan," Sustainability, MDPI, vol. 12(17), pages 1-16, September.
    8. Yanyong Guo & Jibiao Zhou & Yao Wu & Zhibin Li, 2017. "Identifying the factors affecting bike-sharing usage and degree of satisfaction in Ningbo, China," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-19, September.
    9. Ruben Sánchez-Corcuera & Adrián Nuñez-Marcos & Jesus Sesma-Solance & Aritz Bilbao-Jayo & Rubén Mulero & Unai Zulaika & Gorka Azkune & Aitor Almeida, 2019. "Smart cities survey: Technologies, application domains and challenges for the cities of the future," International Journal of Distributed Sensor Networks, , vol. 15(6), pages 15501477198, June.
    10. Nikolaos-Fivos Galatoulas & Konstantinos N. Genikomsakis & Christos S. Ioakimidis, 2020. "Spatio-Temporal Trends of E-Bike Sharing System Deployment: A Review in Europe, North America and Asia," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    11. Trisalyn Nelson & Colin Ferster & Karen Laberee & Daniel Fuller & Meghan Winters, 2021. "Crowdsourced data for bicycling research and practice," Transport Reviews, Taylor & Francis Journals, vol. 41(1), pages 97-114, January.
    12. April Gadsby & Kari Watkins, 2020. "Instrumented bikes and their use in studies on transportation behaviour, safety, and maintenance," Transport Reviews, Taylor & Francis Journals, vol. 40(6), pages 774-795, November.
    13. Majumdar, Bandhan Bandhu & Mitra, Sudeshna, 2018. "Analysis of bicycle route-related improvement strategies for two Indian cities using a stated preference survey," Transport Policy, Elsevier, vol. 63(C), pages 176-188.
    14. Bergantino, Angela Stefania & Intini, Mario & Tangari, Luca, 2021. "Influencing factors for potential bike-sharing users: an empirical analysis during the COVID-19 pandemic," Research in Transportation Economics, Elsevier, vol. 86(C).
    15. Riccardo Rossi & Riccardo Ceccato & Massimiliano Gastaldi, 2020. "Effect of Road Traffic on Air Pollution. Experimental Evidence from COVID-19 Lockdown," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    16. Zhiwei Chen & Yucong Hu & Jutint Li & Xing Wu, 2020. "Optimal Deployment of Electric Bicycle Sharing Stations: Model Formulation and Solution Technique," Networks and Spatial Economics, Springer, vol. 20(1), pages 99-136, March.
    17. Cairns, S. & Behrendt, F. & Raffo, D. & Beaumont, C. & Kiefer, C., 2017. "Electrically-assisted bikes: Potential impacts on travel behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 327-342.
    18. Martin Loidl, 2016. "Spatial Information for Safer Bicycling," Progress in IS, in: Jorge Marx Gomez & Michael Sonnenschein & Ute Vogel & Andreas Winter & Barbara Rapp & Nils Giesen (ed.), Advances and New Trends in Environmental and Energy Informatics, edition 1, chapter 0, pages 219-235, Springer.
    19. Fanying Zheng & Fu Gu & Wujie Zhang & Jianfeng Guo, 2019. "Is Bicycle Sharing an Environmental Practice? Evidence from a Life Cycle Assessment Based on Behavioral Surveys," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    20. Ramon Sanchez-Iborra & Luis Bernal-Escobedo & José Santa, 2020. "Eco-Efficient Mobility in Smart City Scenarios," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    21. Ashish Kabra & Elena Belavina & Karan Girotra, 2020. "Bike-Share Systems: Accessibility and Availability," Management Science, INFORMS, vol. 66(9), pages 3803-3824, September.
    22. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    23. Frauke Behrendt, 2019. "Cycling the Smart and Sustainable City: Analyzing EC Policy Documents on Internet of Things, Mobility and Transport, and Smart Cities," Sustainability, MDPI, vol. 11(3), pages 1-30, February.
    24. Ugo N. Castañon & Paulo J. G. Ribeiro, 2021. "Bikeability and Emerging Phenomena in Cycling: Exploratory Analysis and Review," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Oskarbski & Krystian Birr & Karol Żarski, 2021. "Bicycle Traffic Model for Sustainable Urban Mobility Planning," Energies, MDPI, vol. 14(18), pages 1-36, September.
    2. Mohammad Anwar Alattar & Caitlin Cottrill & Mark Beecroft, 2021. "Sources and Applications of Emerging Active Travel Data: A Review of the Literature," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    3. Gabriel Dias & Elisabete Arsenio & Paulo Ribeiro, 2021. "The Role of Shared E-Scooter Systems in Urban Sustainability and Resilience during the Covid-19 Mobility Restrictions," Sustainability, MDPI, vol. 13(13), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    2. Hui Bi & Zhirui Ye & He Zhu, 2024. "Mining bike sharing trip record data: a closer examination of the operating performance at station level," Transportation, Springer, vol. 51(3), pages 1015-1041, June.
    3. Liu, Yixiao & Tian, Zihao & Pan, Baoran & Zhang, Wenbin & Liu, Yunqi & Tian, Lixin, 2022. "A hybrid big-data-based and tolerance-based method to estimate environmental benefits of electric bike sharing," Applied Energy, Elsevier, vol. 315(C).
    4. Li, Aoyong & Zhao, Pengxiang & Huang, Yizhe & Gao, Kun & Axhausen, Kay W., 2020. "An empirical analysis of dockless bike-sharing utilization and its explanatory factors: Case study from Shanghai, China," Journal of Transport Geography, Elsevier, vol. 88(C).
    5. Haotian Ma & Xinlu Chen & Zhilei Zhen & Qian Wang, 2023. "Bicycle-sharing in Beijing: An Assessment of Economic, Environmental, and Health Effects, and Identification of Key Drivers of Environmental Performance," Networks and Spatial Economics, Springer, vol. 23(1), pages 285-316, March.
    6. Morton, Craig & Kelley, Scott & Monsuur, Fredrik & Hui, Tianwen, 2021. "A spatial analysis of demand patterns on a bicycle sharing scheme: Evidence from London," Journal of Transport Geography, Elsevier, vol. 94(C).
    7. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    8. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    9. Hu, Yujie & Zhang, Yongping & Lamb, David & Zhang, Mingming & Jia, Peng, 2019. "Examining and optimizing the BCycle bike-sharing system – A pilot study in Colorado, US," Applied Energy, Elsevier, vol. 247(C), pages 1-12.
    10. Tianjian Yang & Ye Li & Simin Zhou & Yu Zhang, 2019. "Dynamic Feedback Analysis of Influencing Factors and Challenges of Dockless Bike-Sharing Sustainability in China," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    11. Mohammad Anwar Alattar & Caitlin Cottrill & Mark Beecroft, 2021. "Sources and Applications of Emerging Active Travel Data: A Review of the Literature," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    12. Zhao, Chunkai & Wang, Yuhang & Ge, Zhenyu, 2023. "Is digital finance environmentally friendly in China? Evidence from shared-bike trips," Transport Policy, Elsevier, vol. 138(C), pages 129-143.
    13. Pol Felipe-Falgas & Cristina Madrid-Lopez & Oriol Marquet, 2022. "Assessing Environmental Performance of Micromobility Using LCA and Self-Reported Modal Change: The Case of Shared E-Bikes, E-Scooters, and E-Mopeds in Barcelona," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    14. Ghasri, Milad & Ardeshiri, Ali & Zhang, Xiang & Waller, S. Travis, 2024. "Analysing preferences for integrated micromobility and public transport systems: A hierarchical latent class approach considering taste heterogeneity and attribute non-attendance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    15. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    16. Ma, Xinwei & Zhang, Shuai & Wu, Tao & Yang, Yizhe & Yu, Jiajie, 2023. "Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    17. Kumar Dey, Bibhas & Anowar, Sabreena & Eluru, Naveen, 2021. "A framework for estimating bikeshare origin destination flows using a multiple discrete continuous system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 119-133.
    18. Esther Fasan & Miles Tight & Harry Evdorides, 2021. "Factors Influencing Cycling among Secondary School Adolescents in an Ethnically Diverse City: The Perspective of Birmingham Transport Stakeholders," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    19. Jurgis Zagorskas & Marija Burinskienė, 2019. "Challenges Caused by Increased Use of E-Powered Personal Mobility Vehicles in European Cities," Sustainability, MDPI, vol. 12(1), pages 1-13, December.
    20. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3422-:d:520448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.