IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p2081-d329951.html
   My bibliography  Save this article

Mixed Logit Models for Travelers’ Mode Shifting Considering Bike-Sharing

Author

Listed:
  • Mao Ye

    (Traffic Engineering Department, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Yajing Chen

    (Traffic Engineering Department, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Guixin Yang

    (Transport Authority of Transport Department of Jiangsu Province, Nanjing 210094, China)

  • Bo Wang

    (Traffic Engineering Department, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Qizhou Hu

    (Traffic Engineering Department, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract

This study quantifies the impact of individual attributes, the built environment, and travel characteristics on the use of bike-sharing and the willingness of shifting to bike-sharing-related travel modes (bike-sharing combined with other public transportation modes such as bus and subway) under different scenarios. The data are from an RP (Revealed Preference) survey and SP (Stated Preference) survey in Nanjing, China. Three mixed logit models are established: an individual attribute–travel characteristics model, a various-factor bike-sharing usage frequency model, and a mixed scenario–transfer willingness model. It is found that age and income are negatively associated with bike-sharing usage; the transfer distance (about 1 km), owning no car, students, and enterprises are positively associated with bike-sharing usage; both weather and travel distance have a significant negative impact on mode shifting. The sesearch conclusions can provide a reference for the formulation of urban transportation policies, the daily operation scheduling, and service optimization of bike-sharing.

Suggested Citation

  • Mao Ye & Yajing Chen & Guixin Yang & Bo Wang & Qizhou Hu, 2020. "Mixed Logit Models for Travelers’ Mode Shifting Considering Bike-Sharing," Sustainability, MDPI, vol. 12(5), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2081-:d:329951
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/2081/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/2081/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Faghih-Imani, Ahmadreza & Hampshire, Robert & Marla, Lavanya & Eluru, Naveen, 2017. "An empirical analysis of bike sharing usage and rebalancing: Evidence from Barcelona and Seville," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 177-191.
    2. van den Berg, Pauline & Arentze, Theo & Timmermans, Harry, 2011. "Estimating social travel demand of senior citizens in the Netherlands," Journal of Transport Geography, Elsevier, vol. 19(2), pages 323-331.
    3. Cristian Domarchi & Alejandro Tudela & Angélica González, 2008. "Effect of attitudes, habit and affective appraisal on mode choice: an application to university workers," Transportation, Springer, vol. 35(5), pages 585-599, August.
    4. Wang, Kailai & Akar, Gulsah, 2019. "Gender gap generators for bike share ridership: Evidence from Citi Bike system in New York City," Journal of Transport Geography, Elsevier, vol. 76(C), pages 1-9.
    5. Habib, Khandker Nurul & Mann, Jenessa & Mahmoud, Mohamed & Weiss, Adam, 2014. "Synopsis of bicycle demand in the City of Toronto: Investigating the effects of perception, consciousness and comfortability on the purpose of biking and bike ownership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 67-80.
    6. Noreen McDonald, 2008. "Children’s mode choice for the school trip: the role of distance and school location in walking to school," Transportation, Springer, vol. 35(1), pages 23-35, January.
    7. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    8. Li, Weibo & Kamargianni, Maria, 2018. "Providing quantified evidence to policy makers for promoting bike-sharing in heavily air-polluted cities: A mode choice model and policy simulation for Taiyuan-China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 277-291.
    9. Jia, Ning & Li, Liying & Ling, Shuai & Ma, Shoufeng & Yao, Wang, 2018. "Influence of attitudinal and low-carbon factors on behavioral intention of commuting mode choice – A cross-city study in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 108-118.
    10. Mohammad Ali Arman & Navid Khademi & Matthieu de Lapparent, 2018. "Women’s mode and trip structure choices in daily activity-travel: a developing country perspective," Transportation Planning and Technology, Taylor & Francis Journals, vol. 41(8), pages 845-877, November.
    11. Ermagun, Alireza & Samimi, Amir, 2015. "Promoting active transportation modes in school trips," Transport Policy, Elsevier, vol. 37(C), pages 203-211.
    12. Liu, Diyi & Du, Huibin & Southworth, Frank & Ma, Shoufeng, 2017. "The influence of social-psychological factors on the intention to choose low-carbon travel modes in Tianjin, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 42-53.
    13. Roger Beecham & Jo Wood, 2014. "Exploring gendered cycling behaviours within a large-scale behavioural data-set," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(1), pages 83-97, February.
    14. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    15. Elliot Fishman & Simon Washington & Narelle Haworth, 2013. "Bike Share: A Synthesis of the Literature," Transport Reviews, Taylor & Francis Journals, vol. 33(2), pages 148-165, March.
    16. Vogel, Marie & Hamon, Ronan & Lozenguez, Guillaume & Merchez, Luc & Abry, Patrice & Barnier, Julien & Borgnat, Pierre & Flandrin, Patrick & Mallon, Isabelle & Robardet, Céline, 2014. "From bicycle sharing system movements to users: a typology of Vélo’v cyclists in Lyon based on large-scale behavioural dataset," Journal of Transport Geography, Elsevier, vol. 41(C), pages 280-291.
    17. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    18. Ranran Yang & Ruyin Long, 2016. "Analysis of the Influencing Factors of the Public Willingness to Participate in Public Bicycle Projects and Intervention Strategies—A Case Study of Jiangsu Province, China," Sustainability, MDPI, vol. 8(4), pages 1-16, April.
    19. Wang, Kailai & Akar, Gulsah & Chen, Yu-Jen, 2018. "Bike sharing differences among Millennials, Gen Xers, and Baby Boomers: Lessons learnt from New York City’s bike share," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Jacek Kłos & Grzegorz Sierpiński, 2021. "Building a Model of Integration of Urban Sharing and Public Transport Services," Sustainability, MDPI, vol. 13(6), pages 1-26, March.
    2. Carolina Silva Costa & Cira Souza Pitombo & Felipe Lobo Umbelino de Souza, 2022. "Travel Behavior before and during the COVID-19 Pandemic in Brazil: Mobility Changes and Transport Policies for a Sustainable Transportation System in the Post-Pandemic Period," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    3. Lili Yang & Simeng Fei & Hongfei Jia & Jingdong Qi & Luyao Wang & Xinning Hu, 2023. "Study on the Relationship between the Spatial Distribution of Shared Bicycle Travel Demand and Urban Built Environment," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    4. Muhammad Safdar & Arshad Jamal & Hassan M. Al-Ahmadi & Muhammad Tauhidur Rahman & Meshal Almoshaogeh, 2022. "Analysis of the Influential Factors towards Adoption of Car-Sharing: A Case Study of a Megacity in a Developing Country," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    5. Wang, Yacan & Douglas, Matthew & Hazen, Benjamin, 2021. "Diffusion of public bicycle systems: Investigating influences of users’ perceived risk and switching intention," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 1-13.
    6. Chiara Zanardello, 2023. "Market forces in Italian academia today (and yesterday)," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 651-698, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Böcker, Lars & Anderson, Ellinor & Uteng, Tanu Priya & Throndsen, Torstein, 2020. "Bike sharing use in conjunction to public transport: Exploring spatiotemporal, age and gender dimensions in Oslo, Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 389-401.
    2. Willberg, Elias & Salonen, Maria & Toivonen, Tuuli, 2021. "What do trip data reveal about bike-sharing system users?," Journal of Transport Geography, Elsevier, vol. 91(C).
    3. Böcker, Lars & Anderson, Ellinor, 2020. "Interest-adoption discrepancies, mechanisms of mediation and socio-spatial inclusiveness in bike-sharing: The case of nine urban regions in Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 266-277.
    4. Yi Yao & Yifang Zhang & Lixin Tian & Nianxing Zhou & Zhilin Li & Minggang Wang, 2019. "Analysis of Network Structure of Urban Bike-Sharing System: A Case Study Based on Real-Time Data of a Public Bicycle System," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    5. Chiou, Yu-Chiun & Wu, Kuo-Chi, 2024. "Bikesharing: The first- and last-mile service of public transportation? Evidence from an origin–destination perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    6. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    7. Namkung, Ok Stella & Park, Jonghan & Ko, Joonho, 2023. "Public bike users’ annual travel distance: Findings from combined data of user survey and annual rental records," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    8. Tomasz Bieliński & Agnieszka Kwapisz & Agnieszka Ważna, 2019. "Bike-Sharing Systems in Poland," Sustainability, MDPI, vol. 11(9), pages 1-14, April.
    9. Mingyang Du & Lin Cheng, 2018. "Better Understanding the Characteristics and Influential Factors of Different Travel Patterns in Free-Floating Bike Sharing: Evidence from Nanjing, China," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    10. Chen, Ching-Fu & Lai, Wen-Tai, 2011. "The effects of rational and habitual factors on mode choice behaviors in a motorcycle-dependent region: Evidence from Taiwan," Transport Policy, Elsevier, vol. 18(5), pages 711-718, September.
    11. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    12. Hyungkyoo Kim, 2020. "Seasonal Impacts of Particulate Matter Levels on Bike Sharing in Seoul, South Korea," IJERPH, MDPI, vol. 17(11), pages 1-17, June.
    13. Milad Mehdizadeh & Trond Nordfjaern & AmirReza Mamdoohi, 2018. "The role of socio-economic, built environment and psychological factors in parental mode choice for their children in an Iranian setting," Transportation, Springer, vol. 45(2), pages 523-543, March.
    14. Kyoungok Kim, 2024. "Discovering spatiotemporal usage patterns of a bike-sharing system by type of pass: a case study from Seoul," Transportation, Springer, vol. 51(4), pages 1373-1407, August.
    15. Kumar Dey, Bibhas & Anowar, Sabreena & Eluru, Naveen, 2021. "A framework for estimating bikeshare origin destination flows using a multiple discrete continuous system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 119-133.
    16. Liu, Hung-Chi & Lin, Jen-Jia, 2019. "Associations of built environments with spatiotemporal patterns of public bicycle use," Journal of Transport Geography, Elsevier, vol. 74(C), pages 299-312.
    17. Li, Aoyong & Zhao, Pengxiang & Huang, Yizhe & Gao, Kun & Axhausen, Kay W., 2020. "An empirical analysis of dockless bike-sharing utilization and its explanatory factors: Case study from Shanghai, China," Journal of Transport Geography, Elsevier, vol. 88(C).
    18. Xin, Rui & Yang, Jian & Ai, Bo & Ding, Linfang & Li, Tingting & Zhu, Ruoxin, 2023. "Spatiotemporal analysis of bike mobility chain: A new perspective on mobility pattern discovery in urban bike-sharing system," Journal of Transport Geography, Elsevier, vol. 109(C).
    19. Wang, Kailai & Akar, Gulsah, 2019. "Gender gap generators for bike share ridership: Evidence from Citi Bike system in New York City," Journal of Transport Geography, Elsevier, vol. 76(C), pages 1-9.
    20. Biehl, Alec & Ermagun, Alireza & Stathopoulos, Amanda, 2019. "Utilizing multi-stage behavior change theory to model the process of bike share adoption," Transport Policy, Elsevier, vol. 77(C), pages 30-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2081-:d:329951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.