IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i11p1627-d1399785.html
   My bibliography  Save this article

Optimizing Variational Quantum Neural Networks Based on Collective Intelligence

Author

Listed:
  • Zitong Li

    (School of Information, Hunan University of Humanities, Science and Technology, Loudi 417000, China
    These authors contributed equally to this work.)

  • Tailong Xiao

    (State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute of Quantum Sensing and Information Processing, Shanghai Jiao Tong University, Shanghai 200240, China
    These authors contributed equally to this work.)

  • Xiaoyang Deng

    (Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Guihua Zeng

    (State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute of Quantum Sensing and Information Processing, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Weimin Li

    (School of Information, Hunan University of Humanities, Science and Technology, Loudi 417000, China)

Abstract

Quantum machine learning stands out as one of the most promising applications of quantum computing, widely believed to possess potential quantum advantages. In the era of noisy intermediate-scale quantum, the scale and quality of quantum computers are limited, and quantum algorithms based on fault-tolerant quantum computing paradigms cannot be experimentally verified in the short term. The variational quantum algorithm design paradigm can better adapt to the practical characteristics of noisy quantum hardware and is currently one of the most promising solutions. However, variational quantum algorithms, due to their highly entangled nature, encounter the phenomenon known as the “barren plateau” during the optimization and training processes, making effective optimization challenging. This paper addresses this challenging issue by researching a variational quantum neural network optimization method based on collective intelligence algorithms. The aim is to overcome optimization difficulties encountered by traditional methods such as gradient descent. We study two typical applications of using quantum neural networks: random 2D Hamiltonian ground state solving and quantum phase recognition. We find that the collective intelligence algorithm shows a better optimization compared to gradient descent. The solution accuracy of ground energy and phase classification is enhanced, and the optimization iterations are also reduced. We highlight that the collective intelligence algorithm has great potential in tackling the optimization of variational quantum algorithms.

Suggested Citation

  • Zitong Li & Tailong Xiao & Xiaoyang Deng & Guihua Zeng & Weimin Li, 2024. "Optimizing Variational Quantum Neural Networks Based on Collective Intelligence," Mathematics, MDPI, vol. 12(11), pages 1-14, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1627-:d:1399785
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/11/1627/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/11/1627/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vojtěch Havlíček & Antonio D. Córcoles & Kristan Temme & Aram W. Harrow & Abhinav Kandala & Jerry M. Chow & Jay M. Gambetta, 2019. "Supervised learning with quantum-enhanced feature spaces," Nature, Nature, vol. 567(7747), pages 209-212, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vicente Moret-Bonillo & Samuel Magaz-Romero & Eduardo Mosqueira-Rey, 2022. "Quantum Computing for Dealing with Inaccurate Knowledge Related to the Certainty Factors Model," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    2. Bikram Khanal & Pablo Rivas, 2024. "A Modified Depolarization Approach for Efficient Quantum Machine Learning," Mathematics, MDPI, vol. 12(9), pages 1-17, May.
    3. Rana Muhammad Adnan & Abolfazl Jaafari & Aadhityaa Mohanavelu & Ozgur Kisi & Ahmed Elbeltagi, 2021. "Novel Ensemble Forecasting of Streamflow Using Locally Weighted Learning Algorithm," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    4. Yen-Jui Chang & Wei-Ting Wang & Hao-Yuan Chen & Shih-Wei Liao & Ching-Ray Chang, 2023. "A novel approach for quantum financial simulation and quantum state preparation," Papers 2308.01844, arXiv.org, revised Apr 2024.
    5. Dylan Herman & Cody Googin & Xiaoyuan Liu & Alexey Galda & Ilya Safro & Yue Sun & Marco Pistoia & Yuri Alexeev, 2022. "A Survey of Quantum Computing for Finance," Papers 2201.02773, arXiv.org, revised Jun 2022.
    6. Taylor, Richard D., 2020. "Quantum Artificial Intelligence: A “precautionary” U.S. approach?," Telecommunications Policy, Elsevier, vol. 44(6).
    7. Olawale Ayoade & Pablo Rivas & Javier Orduz, 2022. "Artificial Intelligence Computing at the Quantum Level," Data, MDPI, vol. 7(3), pages 1-16, February.
    8. Wei-Ming Li & Shi-Ju Ran, 2022. "Non-Parametric Semi-Supervised Learning in Many-Body Hilbert Space with Rescaled Logarithmic Fidelity," Mathematics, MDPI, vol. 10(6), pages 1-15, March.
    9. Victor Oliveira Santos & Felipe Pinto Marinho & Paulo Alexandre Costa Rocha & Jesse Van Griensven Thé & Bahram Gharabaghi, 2024. "Application of Quantum Neural Network for Solar Irradiance Forecasting: A Case Study Using the Folsom Dataset, California," Energies, MDPI, vol. 17(14), pages 1-26, July.
    10. Ajagekar, Akshay & You, Fengqi, 2022. "Quantum computing and quantum artificial intelligence for renewable and sustainable energy: A emerging prospect towards climate neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Daniel J. Egger & Claudio Gambella & Jakub Marecek & Scott McFaddin & Martin Mevissen & Rudy Raymond & Andrea Simonetto & Stefan Woerner & Elena Yndurain, 2020. "Quantum Computing for Finance: State of the Art and Future Prospects," Papers 2006.14510, arXiv.org, revised Jan 2021.
    12. Yen-Jui Chang & Wei-Ting Wang & Hao-Yuan Chen & Shih-Wei Liao & Ching-Ray Chang, 2023. "Preparing random state for quantum financing with quantum walks," Papers 2302.12500, arXiv.org, revised Mar 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1627-:d:1399785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.