A Survey of Quantum Computing for Finance
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- J. M. Pino & J. M. Dreiling & C. Figgatt & J. P. Gaebler & S. A. Moses & M. S. Allman & C. H. Baldwin & M. Foss-Feig & D. Hayes & K. Mayer & C. Ryan-Anderson & B. Neyenhuis, 2021. "Demonstration of the trapped-ion quantum CCD computer architecture," Nature, Nature, vol. 592(7853), pages 209-213, April.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Frank Arute & Kunal Arya & Ryan Babbush & Dave Bacon & Joseph C. Bardin & Rami Barends & Rupak Biswas & Sergio Boixo & Fernando G. S. L. Brandao & David A. Buell & Brian Burkett & Yu Chen & Zijun Chen, 2019. "Quantum supremacy using a programmable superconducting processor," Nature, Nature, vol. 574(7779), pages 505-510, October.
- Shleifer, Andrei & Vishny, Robert W, 1997.
"The Limits of Arbitrage,"
Journal of Finance, American Finance Association, vol. 52(1), pages 35-55, March.
- Andrei Shleifer & Robert W. Vishny, 1995. "The Limits of Arbitrage," NBER Working Papers 5167, National Bureau of Economic Research, Inc.
- Andrei Shleifer ad Robert W. Vishny, 1995. "The Limits of Arbitrage," Harvard Institute of Economic Research Working Papers 1725, Harvard - Institute of Economic Research.
- Arturo Estrella & Frederic S. Mishkin, 1998.
"Predicting U.S. Recessions: Financial Variables As Leading Indicators,"
The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
- Arturo Estrella & Frederic S. Mishkin, 1995. "Predicting U.S. Recessions: Financial Variables as Leading Indicators," NBER Working Papers 5379, National Bureau of Economic Research, Inc.
- Arturo Estrella & Frederic S. Mishkin, 1996. "Predicting U.S. recessions: financial variables as leading indicators," Research Paper 9609, Federal Reserve Bank of New York.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Alberto Peruzzo & Jarrod McClean & Peter Shadbolt & Man-Hong Yung & Xiao-Qi Zhou & Peter J. Love & Alán Aspuru-Guzik & Jeremy L. O’Brien, 2014. "A variational eigenvalue solver on a photonic quantum processor," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
- Daniel J. Bernstein & Tanja Lange, 2017. "Post-quantum cryptography," Nature, Nature, vol. 549(7671), pages 188-194, September.
- Hao Tang & Anurag Pal & Lu-Feng Qiao & Tian-Yu Wang & Jun Gao & Xian-Min Jin, 2020. "Quantum Computation for Pricing the Collateralized Debt Obligations," Papers 2008.04110, arXiv.org, revised Apr 2021.
- Matthew Elliott & Benjamin Golub & Matthew O. Jackson, 2014. "Financial Networks and Contagion," American Economic Review, American Economic Association, vol. 104(10), pages 3115-3153, October.
- Rene M. Stulz, 2010.
"Credit Default Swaps and the Credit Crisis,"
Journal of Economic Perspectives, American Economic Association, vol. 24(1), pages 73-92, Winter.
- Stulz, Rene, 2010. "Credit default Swaps and the Credit Crisis," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 6, pages 157-175.
- René M. Stulz, 2009. "Credit Default Swaps and the Credit Crisis," NBER Working Papers 15384, National Bureau of Economic Research, Inc.
- Stulz, Rene M., 2009. "Credit Default Swaps and the Credit Crisis," Working Paper Series 2009-16, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
- Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
- Vojtěch Havlíček & Antonio D. Córcoles & Kristan Temme & Aram W. Harrow & Abhinav Kandala & Jerry M. Chow & Jay M. Gambetta, 2019. "Supervised learning with quantum-enhanced feature spaces," Nature, Nature, vol. 567(7747), pages 209-212, March.
- Brett Hemenway & Sanjeev Khanna, 2015. "Sensitivity and Computational Complexity in Financial Networks," Papers 1503.07676, arXiv.org, revised Oct 2016.
- Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
- Hemenway, Brett & Khanna, Sanjeev, 2016. "Sensitivity and computational complexity in financial networks," Algorithmic Finance, IOS Press, vol. 5(3-4), pages 95-110.
- Shouvanik Chakrabarti & Rajiv Krishnakumar & Guglielmo Mazzola & Nikitas Stamatopoulos & Stefan Woerner & William J. Zeng, 2020. "A Threshold for Quantum Advantage in Derivative Pricing," Papers 2012.03819, arXiv.org, revised May 2021.
- Anna, Petrenko, 2016. "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(1), March.
- D. Bulger & W. P. Baritompa & G. R. Wood, 2003. "Implementing Pure Adaptive Search with Grover's Quantum Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 116(3), pages 517-529, March.
- Seth Lloyd & Silvano Garnerone & Paolo Zanardi, 2016. "Quantum algorithms for topological and geometric analysis of data," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
- Gili Rosenberg & Poya Haghnegahdar & Phil Goddard & Peter Carr & Kesheng Wu & Marcos L'opez de Prado, 2015. "Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer," Papers 1508.06182, arXiv.org, revised Aug 2016.
- Gerard Cornuejols & Marshall L. Fisher & George L. Nemhauser, 1977. "Exceptional Paper--Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms," Management Science, INFORMS, vol. 23(8), pages 789-810, April.
- CORNUEJOLS, Gérard & FISHER, Marshall L. & NEMHAUSER, George L., 1977. "Location of bank accounts to optimize float: An analytic study of exact and approximate algorithms," LIDAM Reprints CORE 292, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Duffie, Darrell & Huang, Ming, 1996. "Swap Rates and Credit Quality," Journal of Finance, American Finance Association, vol. 51(3), pages 921-949, July.
- Boyle, Phelim P., 1977. "Options: A Monte Carlo approach," Journal of Financial Economics, Elsevier, vol. 4(3), pages 323-338, May.
- Bicksler, James & Chen, Andrew H, 1986. "An Economic Analysis of Interest Rate Swaps," Journal of Finance, American Finance Association, vol. 41(3), pages 645-655, July.
- Hsin-Yuan Huang & Michael Broughton & Masoud Mohseni & Ryan Babbush & Sergio Boixo & Hartmut Neven & Jarrod R. McClean, 2021. "Power of data in quantum machine learning," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
- Ilene Grabel, 2003. "Predicting Financial Crisis in Developing Economies: Astronomy or Astrology?," Eastern Economic Journal, Eastern Economic Association, vol. 29(2), pages 243-258, Spring.
- Iordanis Kerenidis & Anupam Prakash & D'aniel Szil'agyi, 2019. "Quantum Algorithms for Portfolio Optimization," Papers 1908.08040, arXiv.org.
- Roman Orus & Samuel Mugel & Enrique Lizaso, 2018. "Forecasting financial crashes with quantum computing," Papers 1810.07690, arXiv.org, revised Jun 2019.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sohum Thakkar & Skander Kazdaghli & Natansh Mathur & Iordanis Kerenidis & Andr'e J. Ferreira-Martins & Samurai Brito, 2023. "Improved Financial Forecasting via Quantum Machine Learning," Papers 2306.12965, arXiv.org, revised Apr 2024.
- Abha Naik & Esra Yeniaras & Gerhard Hellstern & Grishma Prasad & Sanjay Kumar Lalta Prasad Vishwakarma, 2023. "From Portfolio Optimization to Quantum Blockchain and Security: A Systematic Review of Quantum Computing in Finance," Papers 2307.01155, arXiv.org.
- El Amine Cherrat & Snehal Raj & Iordanis Kerenidis & Abhishek Shekhar & Ben Wood & Jon Dee & Shouvanik Chakrabarti & Richard Chen & Dylan Herman & Shaohan Hu & Pierre Minssen & Ruslan Shaydulin & Yue , 2023. "Quantum Deep Hedging," Papers 2303.16585, arXiv.org, revised Nov 2023.
- Kamila Zaman & Alberto Marchisio & Muhammad Kashif & Muhammad Shafique, 2024. "PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms," Papers 2407.19857, arXiv.org.
- Yen-Jui Chang & Wei-Ting Wang & Hao-Yuan Chen & Shih-Wei Liao & Ching-Ray Chang, 2023. "Preparing random state for quantum financing with quantum walks," Papers 2302.12500, arXiv.org, revised Mar 2023.
- Jinge Bao & Patrick Rebentrost, 2022. "Fundamental theorem for quantum asset pricing," Papers 2212.13815, arXiv.org, revised Apr 2023.
- Yen-Jui Chang & Wei-Ting Wang & Hao-Yuan Chen & Shih-Wei Liao & Ching-Ray Chang, 2023. "A novel approach for quantum financial simulation and quantum state preparation," Papers 2308.01844, arXiv.org, revised Apr 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Abha Naik & Esra Yeniaras & Gerhard Hellstern & Grishma Prasad & Sanjay Kumar Lalta Prasad Vishwakarma, 2023. "From Portfolio Optimization to Quantum Blockchain and Security: A Systematic Review of Quantum Computing in Finance," Papers 2307.01155, arXiv.org.
- Ajagekar, Akshay & You, Fengqi, 2022. "Quantum computing and quantum artificial intelligence for renewable and sustainable energy: A emerging prospect towards climate neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
- Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
- Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
- Smith, Simon C., 2021. "International stock return predictability," International Review of Financial Analysis, Elsevier, vol. 78(C).
- Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
- Breitung, Christian, 2023. "Automated stock picking using random forests," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 532-556.
- Uddin, Ajim & Tao, Xinyuan & Yu, Dantong, 2023. "Attention based dynamic graph neural network for asset pricing," Global Finance Journal, Elsevier, vol. 58(C).
- Lioui, Abraham & Tarelli, Andrea, 2022. "Chasing the ESG factor," Journal of Banking & Finance, Elsevier, vol. 139(C).
- Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2022.
"Optimal and robust combination of forecasts via constrained optimization and shrinkage,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 97-116.
- Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2020. "Optimal and robust combination of forecasts via constrained optimization and shrinkage," LIDAM Discussion Papers LFIN 2020006, Université catholique de Louvain, Louvain Finance (LFIN).
- Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2021. "Optimal and robust combination of forecasts via constrained optimization and shrinkage," LIDAM Reprints LFIN 2021014, Université catholique de Louvain, Louvain Finance (LFIN).
- Rubesam, Alexandre, 2022.
"Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market,"
Emerging Markets Review, Elsevier, vol. 51(PB).
- Alexandre Rubesam, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Post-Print hal-03707365, HAL.
- Tu, Xueyong & Li, Bin, 2024. "Robust portfolio selection with smart return prediction," Economic Modelling, Elsevier, vol. 135(C).
- Klages-Mundt, Ariah & Minca, Andreea, 2022. "Optimal intervention in economic networks using influence maximization methods," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1136-1148.
- Samuel Fern'andez-Lorenzo & Diego Porras & Juan Jos'e Garc'ia-Ripoll, 2020. "Hybrid quantum-classical optimization for financial index tracking," Papers 2008.12050, arXiv.org, revised Oct 2021.
- Sitan Chen & Jordan Cotler & Hsin-Yuan Huang & Jerry Li, 2023. "The complexity of NISQ," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
- Park, Yang-Ho, 2022. "Spread position as a leading economic indicator," Journal of Financial Markets, Elsevier, vol. 59(PA).
- Zhaobo Zhu & Licheng Sun, 2024. "When Buffett Meets Bollinger: An Integrated Approach to Fundamental and Technical Analysis," Post-Print hal-04703041, HAL.
- Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
- Constantinos Kardaras & Hyeng Keun Koo & Johannes Ruf, 2022. "Estimation of growth in fund models," Papers 2208.02573, arXiv.org.
- Weichuan Deng & Pawel Polak & Abolfazl Safikhani & Ronakdilip Shah, 2023. "A Unified Framework for Fast Large-Scale Portfolio Optimization," Papers 2303.12751, arXiv.org, revised Nov 2023.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2022-02-14 (Big Data)
- NEP-CMP-2022-02-14 (Computational Economics)
- NEP-CWA-2022-02-14 (Central and Western Asia)
- NEP-FMK-2022-02-14 (Financial Markets)
- NEP-HIS-2022-02-14 (Business, Economic and Financial History)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2201.02773. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.