IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i6p940-d771500.html
   My bibliography  Save this article

Non-Parametric Semi-Supervised Learning in Many-Body Hilbert Space with Rescaled Logarithmic Fidelity

Author

Listed:
  • Wei-Ming Li

    (Department of Physics, Capital Normal University, Beijing 100048, China)

  • Shi-Ju Ran

    (Department of Physics, Capital Normal University, Beijing 100048, China)

Abstract

In quantum and quantum-inspired machine learning, a key step is to embed the data in the quantum space known as Hilbert space. Studying quantum kernel function, which defines the distances among the samples in the Hilbert space, belongs to the fundamental topics in this direction. In this work, we propose a tunable quantum-inspired kernel function (QIKF) named rescaled logarithmic fidelity (RLF) and a non-parametric algorithm for the semi-supervised learning in the quantum space. The rescaling takes advantage of the non-linearity of the kernel to tune the mutual distances of samples in the Hilbert space, and meanwhile avoids the exponentially-small fidelities between quantum many-qubit states. Being non-parametric excludes the possible effects from the variational parameters, and evidently demonstrates the properties of the kernel itself. Our results on the hand-written digits (MNIST dataset) and movie reviews (IMDb dataset) support the validity of our method, by comparing with the standard fidelity as the QIKF as well as several well-known non-parametric algorithms (naive Bayes classifiers, k -nearest neighbors, and spectral clustering). High accuracy is demonstrated, particularly for the unsupervised case with no labeled samples and the few-shot cases with small numbers of labeled samples. With the visualizations by t -stochastic neighbor embedding, our results imply that the machine learning in the Hilbert space complies with the principles of maximal coding rate reduction, where the low-dimensional data exhibit within-class compressibility, between-class discrimination, and overall diversity. The proposed QIKF and semi-supervised algorithm can be further combined with the parametric models such as tensor networks, quantum circuits, and quantum neural networks.

Suggested Citation

  • Wei-Ming Li & Shi-Ju Ran, 2022. "Non-Parametric Semi-Supervised Learning in Many-Body Hilbert Space with Rescaled Logarithmic Fidelity," Mathematics, MDPI, vol. 10(6), pages 1-15, March.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:940-:d:771500
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/6/940/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/6/940/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Schuld, 2019. "Machine learning in quantum spaces," Nature, Nature, vol. 567(7747), pages 179-181, March.
    2. Kerstin Beer & Dmytro Bondarenko & Terry Farrelly & Tobias J. Osborne & Robert Salzmann & Daniel Scheiermann & Ramona Wolf, 2020. "Training deep quantum neural networks," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    3. Jacob Biamonte & Peter Wittek & Nicola Pancotti & Patrick Rebentrost & Nathan Wiebe & Seth Lloyd, 2017. "Quantum machine learning," Nature, Nature, vol. 549(7671), pages 195-202, September.
    4. Florian A. Y. N. Schröder & David H. P. Turban & Andrew J. Musser & Nicholas D. M. Hine & Alex W. Chin, 2019. "Tensor network simulation of multi-environmental open quantum dynamics via machine learning and entanglement renormalisation," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Vojtěch Havlíček & Antonio D. Córcoles & Kristan Temme & Aram W. Harrow & Abhinav Kandala & Jerry M. Chow & Jay M. Gambetta, 2019. "Supervised learning with quantum-enhanced feature spaces," Nature, Nature, vol. 567(7747), pages 209-212, March.
    6. Hsin-Yuan Huang & Michael Broughton & Masoud Mohseni & Ryan Babbush & Sergio Boixo & Hartmut Neven & Jarrod R. McClean, 2021. "Power of data in quantum machine learning," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Jarrod R. McClean & Sergio Boixo & Vadim N. Smelyanskiy & Ryan Babbush & Hartmut Neven, 2018. "Barren plateaus in quantum neural network training landscapes," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofiene Jerbi & Lukas J. Fiderer & Hendrik Poulsen Nautrup & Jonas M. Kübler & Hans J. Briegel & Vedran Dunjko, 2023. "Quantum machine learning beyond kernel methods," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Ajagekar, Akshay & You, Fengqi, 2022. "Quantum computing and quantum artificial intelligence for renewable and sustainable energy: A emerging prospect towards climate neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Eric R. Anschuetz & Bobak T. Kiani, 2022. "Quantum variational algorithms are swamped with traps," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Matthias C. Caro & Hsin-Yuan Huang & M. Cerezo & Kunal Sharma & Andrew Sornborger & Lukasz Cincio & Patrick J. Coles, 2022. "Generalization in quantum machine learning from few training data," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Olawale Ayoade & Pablo Rivas & Javier Orduz, 2022. "Artificial Intelligence Computing at the Quantum Level," Data, MDPI, vol. 7(3), pages 1-16, February.
    6. Johannes Herrmann & Sergi Masot Llima & Ants Remm & Petr Zapletal & Nathan A. McMahon & Colin Scarato & François Swiadek & Christian Kraglund Andersen & Christoph Hellings & Sebastian Krinner & Nathan, 2022. "Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Samson Wang & Enrico Fontana & M. Cerezo & Kunal Sharma & Akira Sone & Lukasz Cincio & Patrick J. Coles, 2021. "Noise-induced barren plateaus in variational quantum algorithms," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Daniel J. Egger & Claudio Gambella & Jakub Marecek & Scott McFaddin & Martin Mevissen & Rudy Raymond & Andrea Simonetto & Stefan Woerner & Elena Yndurain, 2020. "Quantum Computing for Finance: State of the Art and Future Prospects," Papers 2006.14510, arXiv.org, revised Jan 2021.
    9. Xinbiao Wang & Yuxuan Du & Zhuozhuo Tu & Yong Luo & Xiao Yuan & Dacheng Tao, 2024. "Transition role of entangled data in quantum machine learning," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Takayuki Sakuma, 2020. "Application of deep quantum neural networks to finance," Papers 2011.07319, arXiv.org, revised May 2022.
    11. Elies Gil-Fuster & Jens Eisert & Carlos Bravo-Prieto, 2024. "Understanding quantum machine learning also requires rethinking generalization," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Vicente Moret-Bonillo & Samuel Magaz-Romero & Eduardo Mosqueira-Rey, 2022. "Quantum Computing for Dealing with Inaccurate Knowledge Related to the Certainty Factors Model," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    13. Junyu Liu & Minzhao Liu & Jin-Peng Liu & Ziyu Ye & Yunfei Wang & Yuri Alexeev & Jens Eisert & Liang Jiang, 2024. "Towards provably efficient quantum algorithms for large-scale machine-learning models," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    14. Alen Senanian & Sridhar Prabhu & Vladimir Kremenetski & Saswata Roy & Yingkang Cao & Jeremy Kline & Tatsuhiro Onodera & Logan G. Wright & Xiaodi Wu & Valla Fatemi & Peter L. McMahon, 2024. "Microwave signal processing using an analog quantum reservoir computer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. He, Zhimin & Deng, Maijie & Zheng, Shenggen & Li, Lvzhou & Situ, Haozhen, 2023. "GSQAS: Graph Self-supervised Quantum Architecture Search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    16. Jonas Jäger & Roman V. Krems, 2023. "Universal expressiveness of variational quantum classifiers and quantum kernels for support vector machines," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    17. Dylan Herman & Cody Googin & Xiaoyuan Liu & Alexey Galda & Ilya Safro & Yue Sun & Marco Pistoia & Yuri Alexeev, 2022. "A Survey of Quantum Computing for Finance," Papers 2201.02773, arXiv.org, revised Jun 2022.
    18. Manuel S. Rudolph & Jacob Miller & Danial Motlagh & Jing Chen & Atithi Acharya & Alejandro Perdomo-Ortiz, 2023. "Synergistic pretraining of parametrized quantum circuits via tensor networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Supanut Thanasilp & Samson Wang & M. Cerezo & Zoë Holmes, 2024. "Exponential concentration in quantum kernel methods," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Matthias C. Caro & Hsin-Yuan Huang & Nicholas Ezzell & Joe Gibbs & Andrew T. Sornborger & Lukasz Cincio & Patrick J. Coles & Zoë Holmes, 2023. "Out-of-distribution generalization for learning quantum dynamics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:940-:d:771500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.