IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5411-d553163.html
   My bibliography  Save this article

Is the Green Wave Really Green? The Risks of Rebound Effects When Implementing “Green” Policies

Author

Listed:
  • Elisabeth Bloder

    (Institute of Systems Sciences, Innovation and Sustainability Research, University of Graz, 8010 Graz, Austria)

  • Georg Jäger

    (Institute of Systems Sciences, Innovation and Sustainability Research, University of Graz, 8010 Graz, Austria)

Abstract

Traffic and transportation are main contributors to the global CO 2 emissions and resulting climate change. Especially in urban areas, traffic flow is not optimal and thus offers possibilities to reduce emissions. The concept of a Green Wave, i.e., the coordinated switching of traffic lights in order to favor a single direction and reduce congestion, is often discussed as a simple mechanism to avoid breaking and accelerating, thereby reducing fuel consumption. On the other hand, making car use more attractive might also increase emissions. In this study, we use an agent-based model to investigate the benefit of a Green Wave in order to find out whether it can outweigh the effects of increased car use. We find that although the Green Wave has the potential to reduce emissions, there is also a high risk of heaving a net increase in emissions, depending on the specifics of the traffic system.

Suggested Citation

  • Elisabeth Bloder & Georg Jäger, 2021. "Is the Green Wave Really Green? The Risks of Rebound Effects When Implementing “Green” Policies," Sustainability, MDPI, vol. 13(10), pages 1-11, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5411-:d:553163
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5411/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5411/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nagatani, Takashi, 2007. "Vehicular traffic through a sequence of green-wave lights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 503-511.
    2. Anna Laura Huckelba & Paul A. M. Van Lange, 2020. "The Silent Killer: Consequences of Climate Change and How to Survive Past the Year 2050," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    3. Dirk-Jan van de Ven & Mikel González-Eguino & Iñaki Arto, 2018. "The potential of behavioural change for climate change mitigation: a case study for the European Union," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 853-886, August.
    4. Barth, Matthew & Younglove, Theodore & Scora, George, 2005. "Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt67f0v3zf, Institute of Transportation Studies, UC Berkeley.
    5. Bigazzi, Alexander, 2019. "Comparison of marginal and average emission factors for passenger transportation modes," Applied Energy, Elsevier, vol. 242(C), pages 1460-1466.
    6. Martin Fellendorf & Peter Vortisch, 2010. "Microscopic Traffic Flow Simulator VISSIM," International Series in Operations Research & Management Science, in: Jaume Barceló (ed.), Fundamentals of Traffic Simulation, chapter 0, pages 63-93, Springer.
    7. Nagatani, Takashi, 2007. "Vehicular traffic through a self-similar sequence of traffic lights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 381-387.
    8. Sasaki, Masashi & Nagatani, Takashi, 2003. "Transition and saturation of traffic flow controlled by traffic lights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 325(3), pages 531-546.
    9. Nagatani, Takashi, 2007. "Clustering and maximal flow in vehicular traffic through a sequence of traffic lights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(2), pages 651-660.
    10. Lukas Burs & Ellen Roemer & Stefan Worm & Andrea Masini, 2020. "Are They All Equal? Uncovering Adopter Groups of Battery Electric Vehicles," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiang & Sun, Jian-Qiao, 2019. "Intersection multi-objective optimization on signal setting and lane assignment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1233-1246.
    2. Tang, Tie-Qiao & Yi, Zhi-Yan & Zhang, Jian & Wang, Tao & Leng, Jun-Qiang, 2018. "A speed guidance strategy for multiple signalized intersections based on car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 399-409.
    3. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    4. Michel Noussan & Edoardo Campisi & Matteo Jarre, 2022. "Carbon Intensity of Passenger Transport Modes: A Review of Emission Factors, Their Variability and the Main Drivers," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    5. Alexandru Ciocan & Cosmin Ungureanu & Alin Chitu & Elena Carcadea & George Darie, 2020. "Electrical Longboard for Everyday Urban Commuting," Sustainability, MDPI, vol. 12(19), pages 1-14, September.
    6. Herberz, Mario & Hahnel, Ulf J.J. & Brosch, Tobias, 2020. "The importance of consumer motives for green mobility: A multi-modal perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 102-118.
    7. Liu, Jianmiao & Li, Junyi & Chen, Yong & Lian, Song & Zeng, Jiaqi & Geng, Maosi & Zheng, Sijing & Dong, Yinan & He, Yan & Huang, Pei & Zhao, Zhijian & Yan, Xiaoyu & Hu, Qinru & Wang, Lei & Yang, Di & , 2023. "Multi-scale urban passenger transportation CO2 emission calculation platform for smart mobility management," Applied Energy, Elsevier, vol. 331(C).
    8. Fatemeh Enayatollahi & Ahmed Osman Idris & M. A. Amiri Atashgah, 2019. "Modelling bus bunching under variable transit demand using cellular automata," Public Transport, Springer, vol. 11(2), pages 269-298, August.
    9. Jin Li & Feng Wang & Yu He, 2020. "Electric Vehicle Routing Problem with Battery Swapping Considering Energy Consumption and Carbon Emissions," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    10. Bray, Garrett & Cebon, David, 2022. "Operational speed strategy opportunities for autonomous trucking on highways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 75-94.
    11. Jieyu Fan & Arsalan Najafi & Jokhio Sarang & Tian Li, 2023. "Analyzing and Optimizing the Emission Impact of Intersection Signal Control in Mixed Traffic," Sustainability, MDPI, vol. 15(22), pages 1-14, November.
    12. Brinkel, N.B.G. & Schram, W.L. & AlSkaif, T.A. & Lampropoulos, I. & van Sark, W.G.J.H.M., 2020. "Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits," Applied Energy, Elsevier, vol. 276(C).
    13. Seol A. Kwon, 2022. "Where Does an Individual’s Willingness to Act on Alleviating the Climate Crisis in Korea Arise from?," Sustainability, MDPI, vol. 14(11), pages 1-17, May.
    14. Heydarzadeh, Zahra & Mac Kinnon, Michael & Thai, Clinton & Reed, Jeff & Brouwer, Jack, 2020. "Marginal methane emission estimation from the natural gas system," Applied Energy, Elsevier, vol. 277(C).
    15. Yurii Gutarevych & Vasyl Mateichyk & Jonas Matijošius & Alfredas Rimkus & Igor Gritsuk & Oleksander Syrota & Yevheniy Shuba, 2020. "Improving Fuel Economy of Spark Ignition Engines Applying the Combined Method of Power Regulation," Energies, MDPI, vol. 13(5), pages 1-19, March.
    16. Koasidis, Konstantinos & Marinakis, Vangelis & Nikas, Alexandros & Chira, Katerina & Flamos, Alexandros & Doukas, Haris, 2022. "Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece," Energy Policy, Elsevier, vol. 161(C).
    17. Li, Wenjie & Yang, Lixing & Wang, Li & Zhou, Xuesong & Liu, Ronghui & Gao, Ziyou, 2017. "Eco-reliable path finding in time-variant and stochastic networks," Energy, Elsevier, vol. 121(C), pages 372-387.
    18. Dukkanci, Okan & Karsu, Özlem & Kara, Bahar Y., 2022. "Planning sustainable routes: Economic, environmental and welfare concerns," European Journal of Operational Research, Elsevier, vol. 301(1), pages 110-123.
    19. Cassetti, Gabriele & Boitier, Baptiste & Elia, Alessia & Le Mouël, Pierre & Gargiulo, Maurizio & Zagamé, Paul & Nikas, Alexandros & Koasidis, Konstantinos & Doukas, Haris & Chiodi, Alessandro, 2023. "The interplay among COVID-19 economic recovery, behavioural changes, and the European Green Deal: An energy-economic modelling perspective," Energy, Elsevier, vol. 263(PC).
    20. Azra Ghobadi & Mohammad Fallah & Reza Tavakkoli-Moghaddam & Hamed Kazemipoor, 2022. "A Fuzzy Two-Echelon Model to Optimize Energy Consumption in an Urban Logistics Network with Electric Vehicles," Sustainability, MDPI, vol. 14(21), pages 1-31, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5411-:d:553163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.