IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4419-6142-6_2.html
   My bibliography  Save this book chapter

Microscopic Traffic Flow Simulator VISSIM

In: Fundamentals of Traffic Simulation

Author

Listed:
  • Martin Fellendorf

    (University of Technology Graz)

  • Peter Vortisch

    (Karlsruhe Institute of Technology, Institute for Transport Studies (IfV))

Abstract

After two decades of academic research the microscopic, behavior-based multi-purpose traffic flow simulator VISSIM had been introduced in 1994 to analyze and optimize traffic flows. It offers a wide variety of urban and highway applications, integrating public and private transportation. A large part of this chapter is devoted to modeling principles of VISSIM, core traffic flow models consisting of longitudinal and lateral movements of vehicles on multilane streets, a conflict resolution model at areas with overlapping trajectories, dynamic assignment and the social force model applied to pedestrians. Techniques to calibrate the core traffic flow models are discussed briefly.

Suggested Citation

  • Martin Fellendorf & Peter Vortisch, 2010. "Microscopic Traffic Flow Simulator VISSIM," International Series in Operations Research & Management Science, in: Jaume Barceló (ed.), Fundamentals of Traffic Simulation, chapter 0, pages 63-93, Springer.
  • Handle: RePEc:spr:isochp:978-1-4419-6142-6_2
    DOI: 10.1007/978-1-4419-6142-6_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, Wei & Song, Wei-guo & Liu, Xiao-dong & Ma, Jian, 2013. "A microscopic lane changing process model for multilane traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1142-1152.
    2. Umair Hasan & Andrew Whyte & Hamad AlJassmi, 2022. "A Microsimulation Modelling Approach to Quantify Environmental Footprint of Autonomous Buses," Sustainability, MDPI, vol. 14(23), pages 1-31, November.
    3. Lunacek, Monte & Williams, Lindy & Severino, Joseph & Ficenec, Karen & Ugirumurera, Juliette & Eash, Matthew & Ge, Yanbo & Phillips, Caleb, 2021. "A data-driven operational model for traffic at the Dallas Fort Worth International Airport," Journal of Air Transport Management, Elsevier, vol. 94(C).
    4. Monika Ziemska-Osuch & Dawid Osuch, 2022. "Modeling the Assessment of Intersections with Traffic Lights and the Significance Level of the Number of Pedestrians in Microsimulation Models Based on the PTV Vissim Tool," Sustainability, MDPI, vol. 14(14), pages 1-11, July.
    5. Sung-Pil Hong & Kyung Min Kim & Suk-Joon Ko, 2021. "Estimating heterogeneous agent preferences by inverse optimization in a randomized nonatomic game," Annals of Operations Research, Springer, vol. 307(1), pages 207-228, December.
    6. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani, 2016. "A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 159-176.
    7. Shorshani, M. Fallah & Hatzopoulou, Marianne, 2016. "Microscopic Modeling for Atmospheric Urban Pollutant Dispersion in Dense Urban Road Networks," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319256, Transportation Research Forum.
    8. Tuo Sun & Shihao Zhu & Ruochen Hao & Bo Sun & Jiemin Xie, 2022. "Traffic Missing Data Imputation: A Selective Overview of Temporal Theories and Algorithms," Mathematics, MDPI, vol. 10(14), pages 1-22, July.
    9. Demin Nalic & Aleksa Pandurevic & Arno Eichberger & Branko Rogic, 2020. "Design and Implementation of a Co-Simulation Framework for Testing of Automated Driving Systems," Sustainability, MDPI, vol. 12(24), pages 1-12, December.
    10. Xavier Boulet & Mahdi Zargayouna & Gérard Scemama & Fabien Leurent, 2021. "A Middleware-Based Approach for Multi-Scale Mobility Simulation," Future Internet, MDPI, vol. 13(2), pages 1-21, January.
    11. Taghreed Alghamdi & Sifatul Mostafi & Ghadeer Abdelkader & Khalid Elgazzar, 2022. "A Comparative Study on Traffic Modeling Techniques for Predicting and Simulating Traffic Behavior," Future Internet, MDPI, vol. 14(10), pages 1-21, October.
    12. Xuan Fang & Hexuan Li & Tamás Tettamanti & Arno Eichberger & Martin Fellendorf, 2022. "Effects of Automated Vehicle Models at the Mixed Traffic Situation on a Motorway Scenario," Energies, MDPI, vol. 15(6), pages 1-15, March.
    13. Kantelhardt, Jan W. & Fullerton, Matthew & Kämpf, Mirko & Beltran-Ruiz, Cristina & Busch, Fritz, 2013. "Phases of scaling and cross-correlation behavior in traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5742-5756.
    14. Danish Farooq & Janos Juhasz, 2019. "Simulation-Based Analysis of the Effect of Significant Traffic Parameters on Lane Changing for Driving Logic “Cautious” on a Freeway," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    15. Fatemeh Enayatollahi & Ahmed Osman Idris & M. A. Amiri Atashgah, 2019. "Modelling bus bunching under variable transit demand using cellular automata," Public Transport, Springer, vol. 11(2), pages 269-298, August.
    16. Piotr Gołębiowski & Jolanta Żak & Ilona Jacyna-Gołda, 2020. "Approach to the Proecological Distribution of the Traffic Flow on the Transport Network from the Point of View of Carbon Dioxide," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    17. Enrica Carbone & Vinayak V. Dixit & E. Elisabet Rutstrom, 2022. "Should I stay or should I go? Congestion pricing and equilibrium selection in a transportation network," Theory and Decision, Springer, vol. 93(3), pages 535-562, October.
    18. Demin Nalic & Aleksa Pandurevic & Arno Eichberger & Martin Fellendorf & Branko Rogic, 2021. "Software Framework for Testing of Automated Driving Systems in the Traffic Environment of Vissim," Energies, MDPI, vol. 14(11), pages 1-9, May.
    19. Elisabeth Bloder & Georg Jäger, 2021. "Is the Green Wave Really Green? The Risks of Rebound Effects When Implementing “Green” Policies," Sustainability, MDPI, vol. 13(10), pages 1-11, May.
    20. Coşkun, Safa Bozkurt & Atay, Mehmet Tarık & Şentürk, Erman, 2019. "Interpolated variational iteration method for solving the jamming transition problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 481-493.
    21. Ugirumurera, Juliette & Severino, Joseph & Ficenec, Karen & Ge, Yanbo & Wang, Qichao & Williams, Lindy & Chae, Junghoon & Lunacek, Monte & Phillips, Caleb, 2021. "A modeling framework for designing and evaluating curbside traffic management policies at Dallas-Fort Worth International Airport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 130-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4419-6142-6_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.