IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3878-d355913.html
   My bibliography  Save this article

Interplay between Diets, Health, and Climate Change

Author

Listed:
  • Prajal Pradhan

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, D-14412 Potsdam, Germany)

  • Jürgen P. Kropp

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, D-14412 Potsdam, Germany
    Institute for Environmental Science and Geography, University of Potsdam, D-14476 Potsdam, Germany)

Abstract

The world is facing a triple burden of undernourishment, obesity, and environmental impacts from agriculture while nourishing its population. This burden makes sustainable nourishment of the growing population a global challenge. Addressing this challenge requires an understanding of the interplay between diets, health, and associated environmental impacts (e.g., climate change). For this, we identify 11 typical diets that represent dietary habits worldwide for the last five decades. Plant-source foods provide most of all three macronutrients (carbohydrates, protein, and fat) in developing countries. In contrast, animal-source foods provide a majority of protein and fat in developed ones. The identified diets deviate from the recommended healthy diet with either too much (e.g., red meat) or too little (e.g., fruits and vegetables) food and nutrition supply. The total calorie supplies are lower than required for two diets. Sugar consumption is higher than recommended for five diets. Three and five diets consist of larger-than-recommended carbohydrate and fat shares, respectively. Four diets with a large share of animal-source foods exceed the recommended value of red meat. Only two diets consist of at least 400 gm/cap/day of fruits and vegetables while accounting for food waste. Prevalence of undernourishment and underweight dominates in the diets with lower calories. In comparison, a higher prevalence of obesity is observed for diets with higher calories with high shares of sugar, fat, and animal-source foods. However, embodied emissions in the diets do not show a clear relation with calorie supplies and compositions. Two high-calorie diets embody more than 1.5 t CO 2 eq/cap/yr, and two low-calorie diets embody around 1 t CO 2 eq/cap/yr. Our analysis highlights that sustainable and healthy diets can serve the purposes of both nourishing the population and, at the same time, reducing the environmental impacts of agriculture.

Suggested Citation

  • Prajal Pradhan & Jürgen P. Kropp, 2020. "Interplay between Diets, Health, and Climate Change," Sustainability, MDPI, vol. 12(9), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3878-:d:355913
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3878/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3878/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thilsted, Shakuntala Haraksingh & Thorne-Lyman, Andrew & Webb, Patrick & Bogard, Jessica Rose & Subasinghe, Rohana & Phillips, Michael John & Allison, Edward Hugh, 2016. "Sustaining healthy diets: The role of capture fisheries and aquaculture for improving nutrition in the post-2015 era," Food Policy, Elsevier, vol. 61(C), pages 126-131.
    2. Rosemary Green & James Milner & Alan Dangour & Andy Haines & Zaid Chalabi & Anil Markandya & Joseph Spadaro & Paul Wilkinson, 2015. "The potential to reduce greenhouse gas emissions in the UK through healthy and realistic dietary change," Climatic Change, Springer, vol. 129(1), pages 253-265, March.
    3. Bojana Bajželj & Keith S. Richards & Julian M. Allwood & Pete Smith & John S. Dennis & Elizabeth Curmi & Christopher A. Gilligan, 2014. "Importance of food-demand management for climate mitigation," Nature Climate Change, Nature, vol. 4(10), pages 924-929, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Małgorzata Ewa Drywień & Jadwiga Hamulka & Monika A. Zielinska-Pukos & Marta Jeruszka-Bielak & Magdalena Górnicka, 2020. "The COVID-19 Pandemic Lockdowns and Changes in Body Weight among Polish Women. A Cross-Sectional Online Survey PLifeCOVID-19 Study," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    2. Yanyong Hu & Zhixiao Zou & Jiaxi Wu & Zheng Meng, 2024. "Double-edged sword: China’s free trade agreements reinforces embodied greenhouse gas transfers in agricultural products," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helen Harwatt & Joan Sabaté & Gidon Eshel & Sam Soret & William Ripple, 2017. "Substituting beans for beef as a contribution toward US climate change targets," Climatic Change, Springer, vol. 143(1), pages 261-270, July.
    2. Fiona Graham & Jean Russell & Michelle Holdsworth & Manoj Menon & Margo Barker, 2019. "Exploring the Relationship between Environmental Impact and Nutrient Content of Sandwiches and Beverages Available in Cafés in a UK University," Sustainability, MDPI, vol. 11(11), pages 1-13, June.
    3. Sean Irwin & Mark S. Flaherty & Joachim Carolsfeld, 2021. "The contribution of small-scale, privately owned tropical aquaculture to food security and dietary diversity in Bolivia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(1), pages 199-218, February.
    4. Bazoche, Pascale & Guinet, Nicolas & Poret, Sylvaine & Teyssier, Sabrina, 2023. "Does the provision of information increase the substitution of animal proteins with plant-based proteins? An experimental investigation into consumer choices," Food Policy, Elsevier, vol. 116(C).
    5. Menrad, K. & Emberger-Klein, A. & Schops, J., 2018. "Factors influencing consumers behavioral intention towards climate-friendly food consumption in Southern Germany," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277108, International Association of Agricultural Economists.
    6. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    7. Nicky Roberts & Buchari Mengge & Brietta Oaks & Novita Sari & Irsan & Austin Humphries, 2023. "Fish consumption pathways and food security in an Indonesian fishing community," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(1), pages 1-19, February.
    8. Ancuta Isbasoiu & Pierre-Alain Jayet & Stéphane De Cara, 2021. "Increasing food production and mitigating agricultural greenhouse gas emissions in the European Union: impacts of carbon pricing and calorie production targeting," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 409-440, April.
    9. Patricia Eustachio Colombo & Emma Patterson & Liselotte Schäfer Elinder & Anna Karin Lindroos & Ulf Sonesson & Nicole Darmon & Alexandr Parlesak, 2019. "Optimizing School Food Supply: Integrating Environmental, Health, Economic, and Cultural Dimensions of Diet Sustainability with Linear Programming," IJERPH, MDPI, vol. 16(17), pages 1-18, August.
    10. Brent F. Kim & Keeve E. Nachman & Roni A. Neff & Marie L. Spiker & Raychel E. Santo, 2016. "Concerns re: interpretation and translation of findings in Energy use, blue water footprint, and greenhouse gas emissions for current food consumption patterns and dietary recommendations in the US," Environment Systems and Decisions, Springer, vol. 36(1), pages 104-105, March.
    11. Karlsson, Johan O. & Röös, Elin, 2019. "Resource-efficient use of land and animals—Environmental impacts of food systems based on organic cropping and avoided food-feed competition," Land Use Policy, Elsevier, vol. 85(C), pages 63-72.
    12. [WEF] World Economic Forum, 2016. "The Global Risks Report 2016: 11th Edition," Working Papers id:10737, eSocialSciences.
    13. Lucia Rocchi & Antonio Boggia & Luisa Paolotti, 2020. "Sustainable Agricultural Systems: A Bibliometrics Analysis of Ecological Modernization Approach," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    14. Säll, Sarah & Gren, Ing-Marie, 2015. "Effects of an environmental tax on meat and dairy consumption in Sweden," Food Policy, Elsevier, vol. 55(C), pages 41-53.
    15. Naylor, Rosamond & Fang, Safari & Fanzo, Jessica, 2023. "A global view of aquaculture policy," Food Policy, Elsevier, vol. 116(C).
    16. Perino, Grischa & Schwirplies, Claudia, 2022. "Meaty arguments and fishy effects: Field experimental evidence on the impact of reasons to reduce meat consumption," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    17. Jennifer A. Jay & Raffaella D’Auria & J. Cully Nordby & David Andy Rice & David A. Cleveland & Anthony Friscia & Sophie Kissinger & Marc Levis & Hannah Malan & Deepak Rajagopal & Joel R. Reynolds & We, 2019. "Reduction of the carbon footprint of college freshman diets after a food-based environmental science course," Climatic Change, Springer, vol. 154(3), pages 547-564, June.
    18. Daniel H. Pope & Johan O. Karlsson & Phillip Baker & David McCoy, 2021. "Examining the Environmental Impacts of the Dairy and Baby Food Industries: Are First-Food Systems a Crucial Missing Part of the Healthy and Sustainable Food Systems Agenda Now Underway?," IJERPH, MDPI, vol. 18(23), pages 1-15, December.
    19. Jayet, Pierre-Alain & Isbasoiu, Ancuta & De Cara, Stéphane, 2020. "Slaughter cattle to secure food calories and reduce agricultural greenhouse gas emissions? Some prospective estimates for France," Review of Agricultural, Food and Environmental Studies, Institut National de la Recherche Agronomique (INRA), vol. 101(1), July.
    20. Gren, Ing-Marie & Höglind, Lisa & Jansson, Torbjörn, 2021. "Refunding of a climate tax on food consumption in Sweden," Food Policy, Elsevier, vol. 100(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3878-:d:355913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.