IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v11y2024i1d10.1057_s41599-024-02792-1.html
   My bibliography  Save this article

Double-edged sword: China’s free trade agreements reinforces embodied greenhouse gas transfers in agricultural products

Author

Listed:
  • Yanyong Hu

    (Henan Normal University)

  • Zhixiao Zou

    (Beijing Normal University
    Beijing Normal University)

  • Jiaxi Wu

    (China University of Mining and Technology (Beijing))

  • Zheng Meng

    (Shihezi University)

Abstract

China, as the world’s largest importer, heavily relies on agricultural products. However, the impact of China’s free trade agreements (FTAs) on greenhouse gas (GHG) emissions embodied in agricultural product imports has been overlooked. It’s crucial to analyze changes in embodied GHG emissions resulting from FTAs. We categorize 367 agricultural products into 15 categories and construct a dataset on the embodied GHG emissions of these products imported by China from 119 countries between 2000 and 2015. Using the Propensity Score Matching (PSM)-progressive difference-in-differences (DID) method, our findings indicate that China’s FTAs have double-edged impact on agricultural product imports. It has positively influenced imports, with a 12.22% annual growth rate, promoting economic integration. However, it has negatively affected GHG emissions, leading to a 53.00% increase in emissions from agricultural imports. These findings highlight the importance of addressing production and consumption in reducing GHG strategies with agricultural products.

Suggested Citation

  • Yanyong Hu & Zhixiao Zou & Jiaxi Wu & Zheng Meng, 2024. "Double-edged sword: China’s free trade agreements reinforces embodied greenhouse gas transfers in agricultural products," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
  • Handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-02792-1
    DOI: 10.1057/s41599-024-02792-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-024-02792-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-024-02792-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adrian Foong & Prajal Pradhan & Oliver Frör & Jürgen P. Kropp, 2022. "Adjusting agricultural emissions for trade matters for climate change mitigation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Nie, Fei & Li, Jian & Bi, Xiang & Li, Gucheng, 2022. "Agricultural trade liberalization and domestic fertilizer use: Evidence from China-ASEAN free trade agreement," Ecological Economics, Elsevier, vol. 195(C).
    3. Prajal Pradhan & Jürgen P. Kropp, 2020. "Interplay between Diets, Health, and Climate Change," Sustainability, MDPI, vol. 12(9), pages 1-14, May.
    4. David Laborde & Abdullah Mamun & Will Martin & Valeria Piñeiro & Rob Vos, 2021. "Agricultural subsidies and global greenhouse gas emissions," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Baker, Andrew C. & Larcker, David F. & Wang, Charles C.Y., 2022. "How much should we trust staggered difference-in-differences estimates?," Journal of Financial Economics, Elsevier, vol. 144(2), pages 370-395.
    6. Fanghella, Valeria & D'Adda, Giovanna & Tavoni, Massimo, 2022. "Evaluating the impact of technological renovation and competition on energy consumption in the workplace," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    7. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    8. Thompson, Henry & Toledo, Hugo, 2022. "Renewable versus nonrenewable energy for Canada in a free trade agreement with China," Energy Economics, Elsevier, vol. 105(C).
    9. Drabo, Alassane, 2017. "Climate change mitigation and agricultural development models: Primary commodity exports or local consumption production?," Ecological Economics, Elsevier, vol. 137(C), pages 110-125.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panxian Wang & Zimeng Ren & Guanghua Qiao, 2023. "How Does Agricultural Trade Liberalization Have Environmental Impacts? Evidence from a Literature Review," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    2. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    3. Alex Hollingsworth & Krzysztof Karbownik & Melissa A. Thomasson & Anthony Wray, 2024. "The Gift of a Lifetime: The Hospital, Modern Medicine, and Mortality," American Economic Review, American Economic Association, vol. 114(7), pages 2201-2238, July.
    4. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    5. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    6. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    7. Rik Chakraborti & Gavin Roberts, 2023. "How price-gouging regulation undermined COVID-19 mitigation: county-level evidence of unintended consequences," Public Choice, Springer, vol. 196(1), pages 51-83, July.
    8. Aryal, Jeetendra P., 2022. "Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific," ADBI Working Papers 1340, Asian Development Bank Institute.
    9. Ersahin, Nuri & Giannetti, Mariassunta & Huang, Ruidi, 2024. "Trade credit and the stability of supply chains," Journal of Financial Economics, Elsevier, vol. 155(C).
    10. Brown, David P. & Muehlenbachs, Lucija, 2023. "The Value of Electricity Reliability: Evidence from Battery Adoption," Working Papers 2023-5, University of Alberta, Department of Economics, revised 26 Jul 2024.
    11. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    12. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    13. Gao, Zhiyuan & Zhang, Yahui & Li, Lianqing & Hao, Yu, 2024. "Will resource tax reform raise green total factor productivity levels in cities? Evidence from 114 resource-based cities in China," Resources Policy, Elsevier, vol. 88(C).
    14. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    15. Fang, Hongxing & Chen, Linghong & Xiong, Jiacai & Zhu, Yushu, 2024. "Social Trust and Entrepreneurship: Insights from China's Social Credit System," Finance Research Letters, Elsevier, vol. 62(PA).
    16. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    17. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    18. Pan, Yue & Shroff, Nemit & Zhang, Pengdong, 2023. "The dark side of audit market competition," Journal of Accounting and Economics, Elsevier, vol. 75(1).
    19. Chy, Mahfuz & Kyung, Hoyoun, 2023. "The effect of bond market transparency on bank loan contracting," Journal of Accounting and Economics, Elsevier, vol. 75(2).
    20. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-02792-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.