IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i11p3190-d237983.html
   My bibliography  Save this article

Exploring the Relationship between Environmental Impact and Nutrient Content of Sandwiches and Beverages Available in Cafés in a UK University

Author

Listed:
  • Fiona Graham

    (School of Health and Related Research, University of Sheffield, Sheffield S1 4DA, UK)

  • Jean Russell

    (Department of Corporate Information and Computing Services, University of Sheffield, Sheffield S10 2FN, UK)

  • Michelle Holdsworth

    (School of Health and Related Research, University of Sheffield, Sheffield S1 4DA, UK)

  • Manoj Menon

    (Department of Geography, University of Sheffield, Sheffield S3 7HQ, UK)

  • Margo Barker

    (Food and Nutrition Group, Sheffield Business School, Sheffield Hallam University, Sheffield S1 1WB, UK)

Abstract

The threat of climate change and population growth has led to calls for the adoption of environmentally sustainable diets; however, concerns have been raised over the nutritional quality of low Greenhouse Gas Emission (GHGE) diets. This study examined the relationship between measures of environmental sustainability and nutrient content of sandwiches and beverages sold in a UK university café. GHGE and Water Footprint Impact Indicator (WFII) values for the ingredients of sandwiches and beverages were used with recipe information to calculate GHGE (gCO2e per portion) and WFIIs (scarcity weighted litres per portion). These estimates were then combined via orthogonal regression to produce a single Environmental Impact Score (EIS); higher scores equate to greater environmental impact. The relationship between EIS and nutrient content was explored using correlation analysis. Sandwiches that contained meat and animal products as well as beverages that contained milk, cocoa, and/or coffee had the highest EIS. EIS was positively associated with the portion size of sandwiches but not the serving size of beverages. EIS was positively correlated with calories, saturated fat, and sodium. However, EIS was also positively correlated with micronutrients: iron, calcium (beverages only), and B12 (beverages only). The choice of smaller or plant-based sandwiches as well as beverages without milk would reduce environmental impact as well as caloric and sodium intake. However, the selection of low impact options may also reduce the intake of nutrients required for good health. This study revealed possible tensions between nutritional quality and environmental sustainability.

Suggested Citation

  • Fiona Graham & Jean Russell & Michelle Holdsworth & Manoj Menon & Margo Barker, 2019. "Exploring the Relationship between Environmental Impact and Nutrient Content of Sandwiches and Beverages Available in Cafés in a UK University," Sustainability, MDPI, vol. 11(11), pages 1-13, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3190-:d:237983
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/11/3190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/11/3190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Florent Vieux & Nicole N. Darmon & Djilali Touazi & Louis Georges Soler, 2012. "Greenhouse gas emissions of self-selected individual diets in France: Changing the Q23 diet structure or consuming less?," Post-Print hal-02649979, HAL.
    2. Nijdam, Durk & Rood, Trudy & Westhoek, Henk, 2012. "The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes," Food Policy, Elsevier, vol. 37(6), pages 760-770.
    3. Rosemary Green & James Milner & Alan Dangour & Andy Haines & Zaid Chalabi & Anil Markandya & Joseph Spadaro & Paul Wilkinson, 2015. "The potential to reduce greenhouse gas emissions in the UK through healthy and realistic dietary change," Climatic Change, Springer, vol. 129(1), pages 253-265, March.
    4. Vieux, F. & Darmon, N. & Touazi, D. & Soler, L.G., 2012. "Greenhouse gas emissions of self-selected individual diets in France: Changing the diet structure or consuming less?," Ecological Economics, Elsevier, vol. 75(C), pages 91-101.
    5. Bojana Bajželj & Keith S. Richards & Julian M. Allwood & Pete Smith & John S. Dennis & Elizabeth Curmi & Christopher A. Gilligan, 2014. "Importance of food-demand management for climate mitigation," Nature Climate Change, Nature, vol. 4(10), pages 924-929, October.
    6. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    7. Stefan Wahlen & Eva Heiskanen & Kristiina Aalto, 2012. "Endorsing Sustainable Food Consumption: Prospects from Public Catering," Journal of Consumer Policy, Springer, vol. 35(1), pages 7-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Hatjiathanassiadou & Sthephany Rayanne Gomes de Souza & Josimara Pereira Nogueira & Luciana de Medeiros Oliveira & Virgílio José Strasburg & Priscilla Moura Rolim & Larissa Mont’Alverne Jucá Sea, 2019. "Environmental Impacts of University Restaurant Menus: A Case Study in Brazil," Sustainability, MDPI, vol. 11(19), pages 1-15, September.
    2. Josimara Pereira Nogueira & Maria Hatjiathanassiadou & Sthephany Rayanne Gomes de Souza & Virgílio José Strasburg & Priscilla Moura Rolim & Larissa Mont’Alverne Jucá Seabra, 2020. "Sustainable Perspective in Public Educational Institutions Restaurants: From Foodstuffs Purchase to Meal Offer," Sustainability, MDPI, vol. 12(11), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helen Harwatt & Joan Sabaté & Gidon Eshel & Sam Soret & William Ripple, 2017. "Substituting beans for beef as a contribution toward US climate change targets," Climatic Change, Springer, vol. 143(1), pages 261-270, July.
    2. Röös, Elin & Patel, Mikaela & Spångberg, Johanna & Carlsson, Georg & Rydhmer, Lotta, 2016. "Limiting livestock production to pasture and by-products in a search for sustainable diets," Food Policy, Elsevier, vol. 58(C), pages 1-13.
    3. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    4. Jennifer A. Jay & Raffaella D’Auria & J. Cully Nordby & David Andy Rice & David A. Cleveland & Anthony Friscia & Sophie Kissinger & Marc Levis & Hannah Malan & Deepak Rajagopal & Joel R. Reynolds & We, 2019. "Reduction of the carbon footprint of college freshman diets after a food-based environmental science course," Climatic Change, Springer, vol. 154(3), pages 547-564, June.
    5. Anthony Fardet & Edmond Rock, 2020. "Ultra-Processed Foods and Food System Sustainability: What Are the Links?," Sustainability, MDPI, vol. 12(15), pages 1-26, August.
    6. Erica Doro & Vincent Réquillart, 2020. "Review of sustainable diets: are nutritional objectives and low-carbon-emission objectives compatible?," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 101(1), pages 117-146.
    7. Anna Kustar & Dalia Patino-Echeverri, 2021. "A Review of Environmental Life Cycle Assessments of Diets: Plant-Based Solutions Are Truly Sustainable, even in the Form of Fast Foods," Sustainability, MDPI, vol. 13(17), pages 1-22, September.
    8. Thomas Bøker Lund & David Watson & Sinne Smed & Lotte Holm & Thomas Eisler & Annemette Nielsen, 2017. "The Diet-related GHG Index: construction and validation of a brief questionnaire-based index," Climatic Change, Springer, vol. 140(3), pages 503-517, February.
    9. Ariane Kehlbacher & Richard Tiffin & Adam Briggs & Mike Berners-Lee & Peter Scarborough, 2016. "The distributional and nutritional impacts and mitigation potential of emission-based food taxes in the UK," Climatic Change, Springer, vol. 137(1), pages 121-141, July.
    10. Doro, Erica & Réquillart, Vincent, 2018. "Sustainable diets: are nutritional objectives and low-carbon-emission objectives compatible?," TSE Working Papers 18-913, Toulouse School of Economics (TSE).
    11. Rosemary Green & James Milner & Alan Dangour & Andy Haines & Zaid Chalabi & Anil Markandya & Joseph Spadaro & Paul Wilkinson, 2015. "The potential to reduce greenhouse gas emissions in the UK through healthy and realistic dietary change," Climatic Change, Springer, vol. 129(1), pages 253-265, March.
    12. Johanna Ruett & Lena Hennes & Jens Teubler & Boris Braun, 2022. "How Compatible Are Western European Dietary Patterns to Climate Targets? Accounting for Uncertainty of Life Cycle Assessments by Applying a Probabilistic Approach," Sustainability, MDPI, vol. 14(21), pages 1-21, November.
    13. Abeliotis, Konstadinos & Costarelli, Vassiliki & Anagnostopoulos, Konstadinos, 2016. "The Effect of Different Types of Diet on Greenhouse Gas Emissions in Greece," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 7(1), pages 1-14, February.
    14. Elisabeth H.M. Temme & Reina E. Vellinga & Henri de Ruiter & Susanna Kugelberg & Mirjam van de Kamp & Anna Milford & Roberta Alessandrini & Fabio Bartolini & Alberto Sanz-Cobena & Adrian Leip, 2020. "Demand-Side Food Policies for Public and Planetary Health," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
    15. Reina E. Vellinga & Mirjam van de Kamp & Ido B. Toxopeus & Caroline T. M. van Rossum & Elias de Valk & Sander Biesbroek & Anne Hollander & Elisabeth H. M. Temme, 2019. "Greenhouse Gas Emissions and Blue Water Use of Dutch Diets and Its Association with Health," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    16. Pan He & Beiming Cai & Giovanni Baiocchi & Zhu Liu, 2021. "Drivers of GHG emissions from dietary transition patterns in China: Supply versus demand options," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 707-719, June.
    17. Seona Candy & Graham Turner & Kirsten Larsen & Kate Wingrove & Julia Steenkamp & Sharon Friel & Mark Lawrence, 2019. "Modelling the Food Availability and Environmental Impacts of a Shift Towards Consumption of Healthy Dietary Patterns in Australia," Sustainability, MDPI, vol. 11(24), pages 1-27, December.
    18. Caillavet, France & Fadhuile, Adélaïde & Nichèle, Véronique, 2019. "Assessing the distributional effects of carbon taxes on food: Inequalities and nutritional insights in France," Ecological Economics, Elsevier, vol. 163(C), pages 20-31.
    19. Menrad, K. & Emberger-Klein, A. & Schops, J., 2018. "Factors influencing consumers behavioral intention towards climate-friendly food consumption in Southern Germany," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277108, International Association of Agricultural Economists.
    20. McCarthy, Sinéad N. & O’Rourke, Daniel & Kearney, John & McCarthy, Mary & Henchion, Maeve & Hyland, J. J., 2018. "Excessive Food Consumption in Irish Adults: Implications for Climatic Sustainability and Public Health," 166th Seminar, August 30-31, 2018, Galway, West of Ireland 276208, European Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3190-:d:237983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.