IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3285-d347067.html
   My bibliography  Save this article

The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland

Author

Listed:
  • Elżbieta Macioszek

    (Transport Systems and Traffic Engineering Department, Faculty of Transport and Aviation Engineering, Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland)

  • Paulina Świerk

    (Metropolitan Transport Board, Silesian Voivodeship, Barbary 21A Street, 40-053 Katowice, Poland)

  • Agata Kurek

    (Transport Systems and Traffic Engineering Department, Faculty of Transport and Aviation Engineering, Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland)

Abstract

The bike-sharing system allows urban residents to rent a bike at one of the rental stations located in the city, use them for their journey, and return them to any other or the same station. In recent years, in many cities around the world, such systems were established to encourage their residents to use bikes as an element of enhancing sustainable mobility and as a good complement to travel made using other modes of transport. The main purpose of this article is to present the results of an analysis of the functioning of the bike-sharing system in Warsaw (Poland). Moreover, the article presents an analysis of the accessibility to individual stations. An important aspect is that the bike-sharing system has been popular among users and that more people use it. Therefore, the city should be provided with a dense network of conveniently located bike-sharing stations. Also, the quality of the bike-sharing system should be an adjustment to the user’s expectations. In connection with the above, the article also presents the results of the analysis of factors affecting bike-sharing system usage as well as the level of satisfaction connected with bike-sharing system usage. The results of the analysis showed that there is a strong positive correlation between these variables. The obtained results can be helpful for carrying out activities whose purpose is to increase the bike-sharing system usage as well as to increase the level of satisfaction connected with bike-sharing system usage.

Suggested Citation

  • Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3285-:d:347067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3285/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3285/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Faghih-Imani, Ahmadreza & Hampshire, Robert & Marla, Lavanya & Eluru, Naveen, 2017. "An empirical analysis of bike sharing usage and rebalancing: Evidence from Barcelona and Seville," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 177-191.
    2. Tal Raviv & Ofer Kolka, 2013. "Optimal inventory management of a bike-sharing station," IISE Transactions, Taylor & Francis Journals, vol. 45(10), pages 1077-1093.
    3. Frade, Ines & Ribeiro, Anabela, 2015. "Bike-sharing stations: A maximal covering location approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 216-227.
    4. Jiménez, Pilar & Nogal, María & Caulfield, Brian & Pilla, Francesco, 2016. "Perceptually important points of mobility patterns to characterise bike sharing systems: The Dublin case," Journal of Transport Geography, Elsevier, vol. 54(C), pages 228-239.
    5. Lin, Jenn-Rong & Yang, Ta-Hui, 2011. "Strategic design of public bicycle sharing systems with service level constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 284-294, March.
    6. Lee Cronbach, 1951. "Coefficient alpha and the internal structure of tests," Psychometrika, Springer;The Psychometric Society, vol. 16(3), pages 297-334, September.
    7. Caggiani, Leonardo & Camporeale, Rosalia & Marinelli, Mario & Ottomanelli, Michele, 2019. "User satisfaction based model for resource allocation in bike-sharing systems," Transport Policy, Elsevier, vol. 80(C), pages 117-126.
    8. Yanyong Guo & Jibiao Zhou & Yao Wu & Zhibin Li, 2017. "Identifying the factors affecting bike-sharing usage and degree of satisfaction in Ningbo, China," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-19, September.
    9. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system," Journal of Transport Geography, Elsevier, vol. 54(C), pages 218-227.
    10. Fishman, Elliot & Washington, Simon & Haworth, Narelle & Watson, Angela, 2015. "Factors influencing bike share membership: An analysis of Melbourne and Brisbane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 17-30.
    11. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    12. Martin Zaltz Austwick & Oliver O’Brien & Emanuele Strano & Matheus Viana, 2013. "The Structure of Spatial Networks and Communities in Bicycle Sharing Systems," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-17, September.
    13. Elliot Fishman, 2016. "Bikeshare: A Review of Recent Literature," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 92-113, January.
    14. Andrew A. Weiss, 1993. "A Bivariate Ordered Probit Model with Truncation: Helmet Use and Motorcycle Injuries," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 42(3), pages 487-499, September.
    15. Elżbieta Macioszek, 2020. "Roundabout Entry Capacity Calculation—A Case Study Based on Roundabouts in Tokyo, Japan, and Tokyo Surroundings," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    16. Noland, Robert B. & Smart, Michael J. & Guo, Ziye, 2016. "Bikeshare trip generation in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 164-181.
    17. Parkes, Stephen & Mardsen, Greg & Shaheen, Susan PhD & Cohen, Adam, 2013. "Understanding the Diffusion of Public Bikesharing Systems: Evidence from Europe and North America," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3qr9h2pr, Institute of Transportation Studies, UC Berkeley.
    18. Faghih-Imani, Ahmadreza & Eluru, Naveen & El-Geneidy, Ahmed M. & Rabbat, Michael & Haq, Usama, 2014. "How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal," Journal of Transport Geography, Elsevier, vol. 41(C), pages 306-314.
    19. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    20. Iwińska, Katarzyna & Blicharska, Malgorzata & Pierotti, Livia & Tainio, Marko & de Nazelle, Audrey, 2018. "Cycling in Warsaw, Poland – Perceived enablers and barriers according to cyclists and non-cyclists," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 291-301.
    21. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    22. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    23. Jian-gang Shi & Hongyun Si & Guangdong Wu & Yangyue Su & Jing Lan, 2018. "Critical Factors to Achieve Dockless Bike-Sharing Sustainability in China: A Stakeholder-Oriented Network Perspective," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    24. Parkes, Stephen D. & Marsden, Greg & Shaheen, Susan A. & Cohen, Adam P., 2013. "Understanding the diffusion of public bikesharing systems: evidence from Europe and North America," Journal of Transport Geography, Elsevier, vol. 31(C), pages 94-103.
    25. Kaplan, Sigal & Manca, Francesco & Nielsen, Thomas Alexander Sick & Prato, Carlo Giacomo, 2015. "Intentions to use bike-sharing for holiday cycling: An application of the Theory of Planned Behavior," Tourism Management, Elsevier, vol. 47(C), pages 34-46.
    26. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    27. Efthymiou, Dimitrios & Antoniou, Constantinos & Waddell, Paul, 2013. "Factors affecting the adoption of vehicle sharing systems by young drivers," Transport Policy, Elsevier, vol. 29(C), pages 64-73.
    28. Greene, W., 2001. "Estimating Econometric Models with Fixed Effects," New York University, Leonard N. Stern School Finance Department Working Paper Seires 01-10, New York University, Leonard N. Stern School of Business-.
    29. Li, Zhibin & Wang, Wei & Yang, Chen & Ragland, David R., 2013. "Bicycle commuting market analysis using attitudinal market segmentation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 56-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Bakdur & Fumito Masui & Michal Ptaszynski, 2021. "Predicting Increase in Demand for Public Buses in University Students Daily Life Needs: Case Study Based on a City in Japan," Sustainability, MDPI, vol. 13(9), pages 1-28, May.
    2. Jonas Schmid-Querg & Andreas Keler & Georgios Grigoropoulos, 2021. "The Munich Bikeability Index: A Practical Approach for Measuring Urban Bikeability," Sustainability, MDPI, vol. 13(1), pages 1-14, January.
    3. Elżbieta Macioszek & Agata Kurek, 2021. "The Analysis of the Factors Determining the Choice of Park and Ride Facility Using a Multinomial Logit Model," Energies, MDPI, vol. 14(1), pages 1-33, January.
    4. Renata Żochowska & Marianna Jacyna & Marcin Jacek Kłos & Piotr Soczówka, 2021. "A GIS-Based Method of the Assessment of Spatial Integration of Bike-Sharing Stations," Sustainability, MDPI, vol. 13(7), pages 1-29, April.
    5. Jiawei Gui & Qunqi Wu, 2020. "Multiple Utility Analyses for Sustainable Public Transport Planning and Management: Evidence from GPS-Equipped Taxi Data in Haikou," Sustainability, MDPI, vol. 12(19), pages 1-46, September.
    6. Elżbieta Macioszek & Agata Kurek, 2020. "The Use of a Park and Ride System—A Case Study Based on the City of Cracow (Poland)," Energies, MDPI, vol. 13(13), pages 1-26, July.
    7. Mohammed Al-Turki & Arshad Jamal & Hassan M. Al-Ahmadi & Mohammed A. Al-Sughaiyer & Muhammad Zahid, 2020. "On the Potential Impacts of Smart Traffic Control for Delay, Fuel Energy Consumption, and Emissions: An NSGA-II-Based Optimization Case Study from Dhahran, Saudi Arabia," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    8. Katarzyna Turoń & Andrzej Kubik & Feng Chen & Hualan Wang & Bogusław Łazarz, 2020. "A Holistic Approach to Electric Shared Mobility Systems Development—Modelling and Optimization Aspects," Energies, MDPI, vol. 13(21), pages 1-19, November.
    9. Miriam Pirra & Sofia Kalakou & Angela Carboni & Mariana Costa & Marco Diana & Ana Rita Lynce, 2021. "A Preliminary Analysis on Gender Aspects in Transport Systems and Mobility Services: Presentation of a Survey Design," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    10. Oliwia Pietrzak & Krystian Pietrzak, 2021. "The Economic Effects of Electromobility in Sustainable Urban Public Transport," Energies, MDPI, vol. 14(4), pages 1-28, February.
    11. Amila Jayasinghe & N. B. S. Madusanka & Chethika Abenayake & P. K. S. Mahanama, 2021. "A Modeling Framework: To Analyze the Relationship between Accessibility, Land Use and Densities in Urban Areas," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    12. Yongliang Deng & Haolun Guo & Miaomiao Meng & Ying Zhang & Shuangshuang Pei, 2020. "Exploring the Effects of Safety Climate on Worker’s Safety Behavior in Subway Operation," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    13. Raquel Soriano-Gonzalez & Elena Perez-Bernabeu & Yusef Ahsini & Patricia Carracedo & Andres Camacho & Angel A. Juan, 2023. "Analyzing Key Performance Indicators for Mobility Logistics in Smart and Sustainable Cities: A Case Study Centered on Barcelona," Logistics, MDPI, vol. 7(4), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    2. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    3. Kumar Dey, Bibhas & Anowar, Sabreena & Eluru, Naveen, 2021. "A framework for estimating bikeshare origin destination flows using a multiple discrete continuous system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 119-133.
    4. Rodrigo Mora & Pablo Moran, 2020. "Public Bike Sharing Programs Under the Prism of Urban Planning Officials: The Case of Santiago de Chile," Sustainability, MDPI, vol. 12(14), pages 1-20, July.
    5. Morton, Craig & Kelley, Scott & Monsuur, Fredrik & Hui, Tianwen, 2021. "A spatial analysis of demand patterns on a bicycle sharing scheme: Evidence from London," Journal of Transport Geography, Elsevier, vol. 94(C).
    6. Zhao, De & Ong, Ghim Ping & Wang, Wei & Hu, Xiao Jian, 2019. "Effect of built environment on shared bicycle reallocation: A case study on Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 73-88.
    7. Suzanne Maas & Paraskevas Nikolaou & Maria Attard & Loukas Dimitriou, 2021. "Heat, Hills and the High Season: A Model-Based Comparative Analysis of Spatio-Temporal Factors Affecting Shared Bicycle Use in Three Southern European Islands," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    8. Kim, Minjun & Cho, Gi-Hyoug, 2021. "Analysis on bike-share ridership for origin-destination pairs: Effects of public transit route characteristics and land-use patterns," Journal of Transport Geography, Elsevier, vol. 93(C).
    9. Maas, Suzanne & Nikolaou, Paraskevas & Attard, Maria & Dimitriou, Loukas, 2021. "Spatial and temporal analysis of shared bicycle use in Limassol, Cyprus," Journal of Transport Geography, Elsevier, vol. 93(C).
    10. Tomasz Bieliński & Agnieszka Kwapisz & Agnieszka Ważna, 2019. "Bike-Sharing Systems in Poland," Sustainability, MDPI, vol. 11(9), pages 1-14, April.
    11. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    12. Liu, Hung-Chi & Lin, Jen-Jia, 2019. "Associations of built environments with spatiotemporal patterns of public bicycle use," Journal of Transport Geography, Elsevier, vol. 74(C), pages 299-312.
    13. Wang, Mingshu & Zhou, Xiaolu, 2017. "Bike-sharing systems and congestion: Evidence from US cities," Journal of Transport Geography, Elsevier, vol. 65(C), pages 147-154.
    14. Maas, Suzanne & Nikolaou, Paraskevas & Attard, Maria & Dimitriou, Loukas, 2021. "Examining spatio-temporal trip patterns of bicycle sharing systems in Southern European island cities," Research in Transportation Economics, Elsevier, vol. 86(C).
    15. Wang, Kailai & Akar, Gulsah, 2019. "Gender gap generators for bike share ridership: Evidence from Citi Bike system in New York City," Journal of Transport Geography, Elsevier, vol. 76(C), pages 1-9.
    16. Stanislav Kubaľák & Alica Kalašová & Ambróz Hájnik, 2021. "The Bike-Sharing System in Slovakia and the Impact of COVID-19 on This Shared Mobility Service in a Selected City," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    17. Wang, Xudong & Cheng, Zhanhong & Trépanier, Martin & Sun, Lijun, 2021. "Modeling bike-sharing demand using a regression model with spatially varying coefficients," Journal of Transport Geography, Elsevier, vol. 93(C).
    18. Qing Yu & Weifeng Li & Dongyuan Yang & Yingkun Xie, 2020. "Policy Zoning for Efficient Land Utilization Based on Spatio-Temporal Integration between the Bicycle-Sharing Service and the Metro Transit," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    19. Cheng, Long & Yang, Junjian & Chen, Xuewu & Cao, Mengqiu & Zhou, Hang & Sun, Yu, 2020. "How could the station-based bike sharing system and the free-floating bike sharing system be coordinated?," Journal of Transport Geography, Elsevier, vol. 89(C).
    20. Morton, Craig, 2020. "The demand for cycle sharing: Examining the links between weather conditions, air quality levels, and cycling demand for regular and casual users," Journal of Transport Geography, Elsevier, vol. 88(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3285-:d:347067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.