IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0074685.html
   My bibliography  Save this article

The Structure of Spatial Networks and Communities in Bicycle Sharing Systems

Author

Listed:
  • Martin Zaltz Austwick
  • Oliver O’Brien
  • Emanuele Strano
  • Matheus Viana

Abstract

Bicycle sharing systems exist in hundreds of cities around the world, with the aim of providing a form of public transport with the associated health and environmental benefits of cycling without the burden of private ownership and maintenance. Five cities have provided research data on the journeys (start and end time and location) taking place in their bicycle sharing system. In this paper, we employ visualization, descriptive statistics and spatial and network analysis tools to explore system usage in these cities, using techniques to investigate features specific to the unique geographies of each, and uncovering similarities between different systems. Journey displacement analysis demonstrates similar journey distances across the cities sampled, and the (out)strength rank curve for the top 50 stands in each city displays a similar scaling law for each. Community detection in the derived network can identify local pockets of use, and spatial network corrections provide the opportunity for insight above and beyond proximity/popularity correlations predicted by simple spatial interaction models.

Suggested Citation

  • Martin Zaltz Austwick & Oliver O’Brien & Emanuele Strano & Matheus Viana, 2013. "The Structure of Spatial Networks and Communities in Bicycle Sharing Systems," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-17, September.
  • Handle: RePEc:plo:pone00:0074685
    DOI: 10.1371/journal.pone.0074685
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0074685
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0074685&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0074685?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Camille Roth & Soong Moon Kang & Michael Batty & Marc Barthélemy, 2011. "Structure of Urban Movements: Polycentric Activity and Entangled Hierarchical Flows," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
    2. Pucher, J. & Buehler, R. & Bassett, D.R. & Dannenberg, A.L., 2010. "Walking and cycling to health: A comparative analysis of city, state, and international data," American Journal of Public Health, American Public Health Association, vol. 100(10), pages 1986-1992.
    3. Mark Padgham, 2012. "Human Movement Is Both Diffusive and Directed," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Todd, James & O'Brien, Oliver & Cheshire, James, 2021. "A global comparison of bicycle sharing systems," Journal of Transport Geography, Elsevier, vol. 94(C).
    2. Zheng, Zhiguo & Chen, Yunfeng & Zhu, Debao & Sun, Huijun & Wu, Jianjun & Pan, Xing & Li, Daqing, 2021. "Extreme unbalanced mobility network in bike sharing system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    3. Builes-Jaramillo, Alejandro & Lotero, Laura, 2022. "Spatial-temporal network analysis of the public bicycle sharing system in Medellín, Colombia," Journal of Transport Geography, Elsevier, vol. 105(C).
    4. Mateo-Babiano, Iderlina & Bean, Richard & Corcoran, Jonathan & Pojani, Dorina, 2016. "How does our natural and built environment affect the use of bicycle sharing?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 295-307.
    5. Song, Jie & Zhang, Liye & Qin, Zheng & Ramli, Muhamad Azfar, 2022. "Spatiotemporal evolving patterns of bike-share mobility networks and their associations with land-use conditions before and after the COVID-19 outbreak," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    6. Yi Yao & Yifang Zhang & Lixin Tian & Nianxing Zhou & Zhilin Li & Minggang Wang, 2019. "Analysis of Network Structure of Urban Bike-Sharing System: A Case Study Based on Real-Time Data of a Public Bicycle System," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    7. Advait Sarkar & Neal Lathia & Cecilia Mascolo, 2015. "Comparing cities’ cycling patterns using online shared bicycle maps," Transportation, Springer, vol. 42(4), pages 541-559, July.
    8. Wu, Chunliang & Kim, Inhi, 2020. "Analyzing the structural properties of bike-sharing networks: Evidence from the United States, Canada, and China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 52-71.
    9. Médard de Chardon, Cyrille & Caruso, Geoffrey, 2015. "Estimating bike-share trips using station level data," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 260-279.
    10. Song, Jie & Zhang, Liye & Qin, Zheng & Ramli, Muhamad Azfar, 2021. "Where are public bikes? The decline of dockless bike-sharing supply in Singapore and its resulting impact on ridership activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 72-90.
    11. Zhan Gao & Sheng Wei & Lei Wang & Sijia Fan, 2020. "Exploring the Spatial-Temporal Characteristics of Traditional Public Bicycle Use in Yancheng, China: A Perspective of Time Series Cluster of Stations," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    12. Stanislav Kubaľák & Alica Kalašová & Ambróz Hájnik, 2021. "The Bike-Sharing System in Slovakia and the Impact of COVID-19 on This Shared Mobility Service in a Selected City," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    13. Zhang, Yongping & Mi, Zhifu, 2018. "Environmental benefits of bike sharing: A big data-based analysis," Applied Energy, Elsevier, vol. 220(C), pages 296-301.
    14. Justine I Blanford & MGIS Geog 586 Students, 2020. "Pedal Power: Explorers and commuters of New York Citi Bikesharing scheme," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-15, June.
    15. Dafeng Xu, 2020. "Free Wheel, Free Will! The Effects of Bikeshare Systems on Urban Commuting Patterns in the U.S," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(3), pages 664-685, June.
    16. Yang, Xu-Hua & Chen, Guang & Chen, Sheng-Yong & Wang, Wan-Liang & Wang, Lei, 2014. "Study on some bus transport networks in China with considering spatial characteristics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 1-10.
    17. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    18. Sarah C. Gadd & Alexis Comber & Mark S. Gilthorpe & Keiran Suchak & Alison J. Heppenstall, 2022. "Simplifying the interpretation of continuous time models for spatio-temporal networks," Journal of Geographical Systems, Springer, vol. 24(2), pages 171-198, April.
    19. Rayane El Sibai & Khalil Challita & Jacques Bou Abdo & Jacques Demerjian, 2021. "A New User-Based Incentive Strategy for Improving Bike Sharing Systems’ Performance," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    20. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    21. Xiao Zhou & Lu Huang & Yi Zhang & Miaomiao Yu, 2019. "A hybrid approach to detecting technological recombination based on text mining and patent network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 699-737, November.
    22. Chanuki Illushka Seresinhe & Helen Susannah Moat & Tobias Preis, 2018. "Quantifying scenic areas using crowdsourced data," Environment and Planning B, , vol. 45(3), pages 567-582, May.
    23. Goodman, Anna & Cheshire, James, 2014. "Inequalities in the London bicycle sharing system revisited: impacts of extending the scheme to poorer areas but then doubling prices," Journal of Transport Geography, Elsevier, vol. 41(C), pages 272-279.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qikang Zhong & Bo Li & Tian Dong, 2024. "Building sustainable slow communities: the impact of built environments on leisure-time physical activities in Shanghai," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-21, December.
    2. Paul Drummond, 2021. "Assessing City Governance for Low-Carbon Mobility in London," Sustainability, MDPI, vol. 13(5), pages 1-24, February.
    3. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    4. Hu, Yujie & Zhang, Yongping & Lamb, David & Zhang, Mingming & Jia, Peng, 2019. "Examining and optimizing the BCycle bike-sharing system – A pilot study in Colorado, US," Applied Energy, Elsevier, vol. 247(C), pages 1-12.
    5. Kroesen, Maarten & van Wee, Bert, 2022. "Understanding how accessibility influences health via active travel: Results from a structural equation model," Journal of Transport Geography, Elsevier, vol. 102(C).
    6. Veronika Kalouguina & Joël Wagner, 2020. "How Do Health, Care Services Consumption and Lifestyle Factors Affect the Choice of Health Insurance Plans in Switzerland?," Risks, MDPI, vol. 8(2), pages 1-21, April.
    7. Nicholas A. Mailloux & Colleen P. Henegan & Dorothy Lsoto & Kristen P. Patterson & Paul C. West & Jonathan A. Foley & Jonathan A. Patz, 2021. "Climate Solutions Double as Health Interventions," IJERPH, MDPI, vol. 18(24), pages 1-15, December.
    8. Yang, Yongjiang & Sasaki, Kuniaki & Cheng, Long & Tao, Sui, 2022. "Does the built environment matter for active travel among older adults: Insights from Chiba City, Japan," Journal of Transport Geography, Elsevier, vol. 101(C).
    9. He, Xuan & Zhao, Hai & Cai, Wei & Li, Guang-Guang & Pei, Fan-Dong, 2015. "Analyzing the structure of earthquake network by k-core decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 34-43.
    10. Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
    11. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    12. Norwood, Patricia & Eberth, Barbara & Farrar, Shelley & Anable, Jillian & Ludbrook, Anne, 2014. "Active travel intervention and physical activity behaviour: An evaluation," Social Science & Medicine, Elsevier, vol. 113(C), pages 50-58.
    13. Yeran Sun & Amin Mobasheri, 2017. "Utilizing Crowdsourced Data for Studies of Cycling and Air Pollution Exposure: A Case Study Using Strava Data," IJERPH, MDPI, vol. 14(3), pages 1-19, March.
    14. Sadia Afrose & Ahmad Mojtoba Riyadh & Afsana Haque, 2019. "Cores of Dhaka city: area delimitation and comparison of their characteristics," Asia-Pacific Journal of Regional Science, Springer, vol. 3(2), pages 521-560, June.
    15. Craig A. Talmage & Chad Frederick, 2019. "Quality of Life, Multimodality, and the Demise of the Autocentric Metropolis: A Multivariate Analysis of 148 Mid-Size U.S. Cities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 365-390, January.
    16. Zuoxian Gan & Min Yang & Tao Feng & Harry Timmermans, 2020. "Understanding urban mobility patterns from a spatiotemporal perspective: daily ridership profiles of metro stations," Transportation, Springer, vol. 47(1), pages 315-336, February.
    17. Chen Zhong & Michael Batty & Ed Manley & Jiaqiu Wang & Zijia Wang & Feng Chen & Gerhard Schmitt, 2016. "Variability in Regularity: Mining Temporal Mobility Patterns in London, Singapore and Beijing Using Smart-Card Data," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-17, February.
    18. Huo, Jie & Wang, Xu-Ming & Zhao, Ning & Hao, Rui, 2016. "Statistical characteristics of dynamics for population migration driven by the economic interests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 123-134.
    19. Yeran Sun & Hongchao Fan & Ming Li & Alexander Zipf, 2016. "Identifying the city center using human travel flows generated from location-based social networking data," Environment and Planning B, , vol. 43(3), pages 480-498, May.
    20. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0074685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.