IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v82y2015icp216-227.html
   My bibliography  Save this article

Bike-sharing stations: A maximal covering location approach

Author

Listed:
  • Frade, Ines
  • Ribeiro, Anabela

Abstract

The promotion of sustainable alternatives to motorized individual mobility has been seen in the past few decades as one of the cornerstones in a strategy to reduce the negative externalities related to the transportation sector. Bicycle sharing is increasingly popular as a sustainable transport system and the number of bike sharing schemes has grown significantly worldwide in recent years. One of the most important elements in implementation of these systems is the location of the stations. In fact the non-optimal locating of bike sharing compromises its success.

Suggested Citation

  • Frade, Ines & Ribeiro, Anabela, 2015. "Bike-sharing stations: A maximal covering location approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 216-227.
  • Handle: RePEc:eee:transa:v:82:y:2015:i:c:p:216-227
    DOI: 10.1016/j.tra.2015.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415002487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2015.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tal Raviv & Ofer Kolka, 2013. "Optimal inventory management of a bike-sharing station," IISE Transactions, Taylor & Francis Journals, vol. 45(10), pages 1077-1093.
    2. Lin, Jenn-Rong & Yang, Ta-Hui, 2011. "Strategic design of public bicycle sharing systems with service level constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 284-294, March.
    3. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    4. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    5. Susan Handy & Yan Xing & Theodore Buehler, 2010. "Factors associated with bicycle ownership and use: a study of six small U.S. cities," Transportation, Springer, vol. 37(6), pages 967-985, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Çelebi, Dilay & Yörüsün, Aslı & Işık, Hanife, 2018. "Bicycle sharing system design with capacity allocations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 86-98.
    2. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    3. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    4. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    5. Chiou, Yu-Chiun & Wu, Kuo-Chi, 2024. "Bikesharing: The first- and last-mile service of public transportation? Evidence from an origin–destination perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    6. Jinyi Zhou & Changyuan Jing & Xiangjun Hong & Tian Wu, 2019. "Winter Sabotage: The Three-Way Interactive Effect of Gender, Age, and Season on Public Bikesharing Usage," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    7. Ma, Xinwei & Zhang, Shuai & Wu, Tao & Yang, Yizhe & Yu, Jiajie, 2023. "Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. J. Christopher Westland & Jian Mou & Dafei Yin, 2018. "Prediction of Shared Bicycle Demand with Wavelet Thresholding," Papers 1802.02683, arXiv.org.
    9. He, Xiaozhou & Wang, Qingyi, 2024. "A stochastic programming model for free-floating shared bike redistribution considering bike gathering," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    10. Wang, Mingshu & Zhou, Xiaolu, 2017. "Bike-sharing systems and congestion: Evidence from US cities," Journal of Transport Geography, Elsevier, vol. 65(C), pages 147-154.
    11. Faghih-Imani, Ahmadreza & Hampshire, Robert & Marla, Lavanya & Eluru, Naveen, 2017. "An empirical analysis of bike sharing usage and rebalancing: Evidence from Barcelona and Seville," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 177-191.
    12. Sohrabi, Soheil & Paleti, Rajesh & Balan, Lacramioara & Cetin, Mecit, 2020. "Real-time prediction of public bike sharing system demand using generalized extreme value count model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 325-336.
    13. Yang, Lin & Zhang, Fayong & Kwan, Mei-Po & Wang, Ke & Zuo, Zejun & Xia, Shaotian & Zhang, Zhiyong & Zhao, Xinpei, 2020. "Space-time demand cube for spatial-temporal coverage optimization model of shared bicycle system: A study using big bike GPS data," Journal of Transport Geography, Elsevier, vol. 88(C).
    14. Li, Weibo & Kamargianni, Maria, 2018. "Providing quantified evidence to policy makers for promoting bike-sharing in heavily air-polluted cities: A mode choice model and policy simulation for Taiyuan-China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 277-291.
    15. Lv, Chang & Zhang, Chaoyong & Lian, Kunlei & Ren, Yaping & Meng, Leilei, 2020. "A hybrid algorithm for the static bike-sharing re-positioning problem based on an effective clustering strategy," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 1-21.
    16. Caggiani, Leonardo & Camporeale, Rosalia & Marinelli, Mario & Ottomanelli, Michele, 2019. "User satisfaction based model for resource allocation in bike-sharing systems," Transport Policy, Elsevier, vol. 80(C), pages 117-126.
    17. Stanislav Kubaľák & Alica Kalašová & Ambróz Hájnik, 2021. "The Bike-Sharing System in Slovakia and the Impact of COVID-19 on This Shared Mobility Service in a Selected City," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    18. Dell'Amico, Mauro & Hadjicostantinou, Eleni & Iori, Manuel & Novellani, Stefano, 2014. "The bike sharing rebalancing problem: Mathematical formulations and benchmark instances," Omega, Elsevier, vol. 45(C), pages 7-19.
    19. Médard de Chardon, Cyrille & Caruso, Geoffrey & Thomas, Isabelle, 2016. "Bike-share rebalancing strategies, patterns, and purpose," Journal of Transport Geography, Elsevier, vol. 55(C), pages 22-39.
    20. Zhang, Ying & Thomas, Tom & Brussel, Mark & van Maarseveen, Martin, 2017. "Exploring the impact of built environment factors on the use of public bikes at bike stations: Case study in Zhongshan, China," Journal of Transport Geography, Elsevier, vol. 58(C), pages 59-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:82:y:2015:i:c:p:216-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.