IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3125-d345006.html
   My bibliography  Save this article

Empirical Study on Bikesharing Brand Selection in China in the Post-Sharing Era

Author

Listed:
  • Guangnian Xiao

    (School of Economics and Management, Shanghai Maritime University, Shanghai 201306, China)

  • Zihao Wang

    (School of Economics and Management, Shanghai Maritime University, Shanghai 201306, China)

Abstract

With the rapid popularization of mobile Internet technology and smart terminal equipment in recent years, the volume and usage of dockless bikesharing (hereafter referred to as bikesharing), which is green, environmentally friendly and convenient, have grown rapidly, making it one of the China’s “new four major inventions.” The development of the bikesharing in China consists of a pre-sharing era and a post-sharing era. In the pre-sharing era, capital-driven vicious market competition and lack of precise control have led to the abuse of urban space. Since the post-sharing era, the industry structure has returned to rationality, and many participants have been forced out of the market. The bikesharing has formed an oligopoly market consisting of head players such as Hellobike, Mobike, and Ofo. Therefore, how to improve the level of refined operations, promote sustainable development, improve cyclist satisfaction, and contribute to China’s strength in transportation have become urgent problems for bikesharing companies and traffic management departments. From the perspective of the cyclist experience, the brand choice of the bikesharing is taken as the research object. An online revealed preference survey is used to collect data on cyclists’ socio-economic attributes and subjective evaluations on the bikesharing. The conditional Logit model is used to explore the important factors that influence cyclists on the choice of bikesharing brands. Research results include: (1) age, occupation type, after-tax monthly income of the faculty group, riding comfort, rent, picking up/returning convenience, word of mouth, and volume have a significant impact on cyclists’ bikesharing brand choices; (2) gender, educational background, monthly living expenses of the student group, appearance, deposit, deposit returning speed, rate of broken bikes, ease of use of software, and rent discount have no significant impact on cyclists’ bikesharing brand choices. The research results are of great significance for improving the service quality of bikesharing companies and promoting the healthy development of the shared economy in China. Based on the results of the study, policy recommendations are made on the improvement for riding comfort, human-centered design, and word of mouth, and the construction of shared facilities.

Suggested Citation

  • Guangnian Xiao & Zihao Wang, 2020. "Empirical Study on Bikesharing Brand Selection in China in the Post-Sharing Era," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3125-:d:345006
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raux, Charles & Zoubir, Ayman & Geyik, Mirkan, 2017. "Who are bike sharing schemes members and do they travel differently? The case of Lyon’s “Velo’v” scheme," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 350-363.
    2. Cohen, Adam & Shaheen, Susan PhD, 2018. "Planning for Shared Mobility," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0dk3h89p, Institute of Transportation Studies, UC Berkeley.
    3. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2015. "Analysing bicycle-sharing system user destination choice preferences: Chicago’s Divvy system," Journal of Transport Geography, Elsevier, vol. 44(C), pages 53-64.
    4. Li, Weibo & Kamargianni, Maria, 2018. "Providing quantified evidence to policy makers for promoting bike-sharing in heavily air-polluted cities: A mode choice model and policy simulation for Taiyuan-China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 277-291.
    5. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    6. Zhang, J. & Meng, M. & Wang, David, Z.W., 2019. "A dynamic pricing scheme with negative prices in dockless bike sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 201-224.
    7. Kou, Zhaoyu & Cai, Hua, 2019. "Understanding bike sharing travel patterns: An analysis of trip data from eight cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 785-797.
    8. Guangnian Xiao & Qin Cheng & Chunqin Zhang, 2019. "Detecting travel modes from smartphone-based travel surveys with continuous hidden Markov models," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    9. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    10. Rui Zhao & Linchuan Yang & Xinrong Liang & Yuanyuan Guo & Yi Lu & Yixuan Zhang & Xinyun Ren, 2019. "Last-Mile Travel Mode Choice: Data-Mining Hybrid with Multiple Attribute Decision Making," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    11. Kim, Kyoungok, 2018. "Investigation on the effects of weather and calendar events on bike-sharing according to the trip patterns of bike rentals of stations," Journal of Transport Geography, Elsevier, vol. 66(C), pages 309-320.
    12. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    13. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    14. Shaheen, Susan PhD & Cohen, Adam, 2019. "Shared Micromoblity Policy Toolkit: Docked and Dockless Bike and Scooter Sharing," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt00k897b5, Institute of Transportation Studies, UC Berkeley.
    15. Shuhong Ma & Yechao Zhou & Zhoulin Yu & Yan Zhang, 2019. "College Students’ Shared Bicycle Use Behavior Based on the NL Model and Factor Analysis," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    16. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atanas Ilchev & Vanya Ivanova & Hristina Kulina & Polina Yaneva & Boyan Zlatanov, 2024. "Investigation of Equilibrium in Oligopoly Markets with the Help of Tripled Fixed Points in Banach Spaces," Econometrics, MDPI, vol. 12(2), pages 1-24, June.
    2. Bo Yang & Yao Wu & Weihua Zhang & Jie Bao, 2020. "Modeling Collision Probability on Freeway: Accounting for Different Types and Severities in Various LOS," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    3. Jie Lyu & Jing Zhang, 2021. "An Empirical Study into Consumer Acceptance of Dockless Bikes Sharing System Based on TAM," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    4. Yulia Dzhabarova & Stanimir Kabaivanov & Margarita Ruseva & Boyan Zlatanov, 2020. "Existence, Uniqueness and Stability of Market Equilibrium in Oligopoly Markets," Administrative Sciences, MDPI, vol. 10(3), pages 1-32, September.
    5. Wang, Yacan & Douglas, Matthew & Hazen, Benjamin, 2021. "Diffusion of public bicycle systems: Investigating influences of users’ perceived risk and switching intention," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 1-13.
    6. Wenya Cui & Guangnian Xiao, 2021. "Tripartite Dynamic Game among Government, Bike-Sharing Enterprises, and Consumers under the Influence of Seasons and Quota," Sustainability, MDPI, vol. 13(20), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    2. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    3. Hyungkyoo Kim, 2020. "Seasonal Impacts of Particulate Matter Levels on Bike Sharing in Seoul, South Korea," IJERPH, MDPI, vol. 17(11), pages 1-17, June.
    4. Li, Shaoying & Zhuang, Caigang & Tan, Zhangzhi & Gao, Feng & Lai, Zhipeng & Wu, Zhifeng, 2021. "Inferring the trip purposes and uncovering spatio-temporal activity patterns from dockless shared bike dataset in Shenzhen, China," Journal of Transport Geography, Elsevier, vol. 91(C).
    5. Xavier Bach & Carme Miralles-Guasch & Oriol Marquet, 2023. "Spatial Inequalities in Access to Micromobility Services: An Analysis of Moped-Style Scooter Sharing Systems in Barcelona," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    6. Jun Li & Jiachao Shen & Bicen Jia, 2021. "Exploring Intention to Use Shared Electric Bicycles by the Extended Theory of Planned Behavior," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    7. Xin, Rui & Yang, Jian & Ai, Bo & Ding, Linfang & Li, Tingting & Zhu, Ruoxin, 2023. "Spatiotemporal analysis of bike mobility chain: A new perspective on mobility pattern discovery in urban bike-sharing system," Journal of Transport Geography, Elsevier, vol. 109(C).
    8. Li, Chunzhi & Xiao, Wei & Zhang, Dayong & Ji, Qiang, 2021. "Low-carbon transformation of cities: Understanding the demand for dockless bike sharing in China," Energy Policy, Elsevier, vol. 159(C).
    9. Morton, Craig, 2020. "The demand for cycle sharing: Examining the links between weather conditions, air quality levels, and cycling demand for regular and casual users," Journal of Transport Geography, Elsevier, vol. 88(C).
    10. Morton, Craig & Kelley, Scott & Monsuur, Fredrik & Hui, Tianwen, 2021. "A spatial analysis of demand patterns on a bicycle sharing scheme: Evidence from London," Journal of Transport Geography, Elsevier, vol. 94(C).
    11. Zhao, De & Ong, Ghim Ping & Wang, Wei & Hu, Xiao Jian, 2019. "Effect of built environment on shared bicycle reallocation: A case study on Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 73-88.
    12. Zhang, Yuhan & Shao, Yichang & Bi, Hui & Aoyong, Li & Ye, Zhirui, 2023. "Bike-sharing systems rebalancing considering redistribution proportions: A user-based repositioning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    13. Link, Christoph & Strasser, Christoph & Hinterreiter, Michael, 2020. "Free-floating bikesharing in Vienna – A user behaviour analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 168-182.
    14. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    15. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    16. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    17. Nikolaos-Fivos Galatoulas & Konstantinos N. Genikomsakis & Christos S. Ioakimidis, 2020. "Spatio-Temporal Trends of E-Bike Sharing System Deployment: A Review in Europe, North America and Asia," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    18. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    19. Virginie Boutueil & Luc Nemett & Thomas Quillerier, 2021. "Trends in Competition among Digital Platforms for Shared Mobility: Insights from a Worldwide Census and Prospects for Research," Post-Print hal-03388213, HAL.
    20. Lidong Zhu & Mujahid Ali & Elżbieta Macioszek & Mahdi Aghaabbasi & Amin Jan, 2022. "Approaching Sustainable Bike-Sharing Development: A Systematic Review of the Influence of Built Environment Features on Bike-Sharing Ridership," Sustainability, MDPI, vol. 14(10), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3125-:d:345006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.