IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i4p2136-d748889.html
   My bibliography  Save this article

Stability Risk Assessment of Underground Rock Pillars Using Logistic Model Trees

Author

Listed:
  • Ning Li

    (School of Mining Engineering, Anhui University of Science and Technology, Huainan 232001, China)

  • Masoud Zare

    (United Consulting Group Ltd., Norcross, GA 30071, USA)

  • Congke Yi

    (ETSI Caminos, Canales y Puertos, Technical University of Madrid, 28040 Madrid, Spain)

  • Rafael Jimenez

    (ETSI Caminos, Canales y Puertos, Technical University of Madrid, 28040 Madrid, Spain)

Abstract

Pillars are important structural elements that provide temporary or permanent support in underground spaces. Unstable pillars can result in rock sloughing leading to roof collapse, and they can also cause rock burst. Hence, the prediction of underground pillar stability is important. This paper presents a novel application of Logistic Model Trees (LMT) to predict underground pillar stability. Seven parameters—pillar width, pillar height, ratio of pillar width to height, uniaxial compressive strength of rock, average pillar stress, underground depth, and Bord width—are employed to construct LMTs for rock and coal pillars. The LogitBoost algorithm is applied to train on two data sets of rock and coal pillar case histories. The two models are validated with (i) 10-fold cross-validation and with (ii) another set of new case histories. Results suggest that the accuracy of the proposed LMT is the highest among other common machine learning methods previously employed in the literature. Moreover, a sensitivity analysis indicates that the average stress, p , and the ratio of pillar width to height, r , are the most influential parameters for the proposed models.

Suggested Citation

  • Ning Li & Masoud Zare & Congke Yi & Rafael Jimenez, 2022. "Stability Risk Assessment of Underground Rock Pillars Using Logistic Model Trees," IJERPH, MDPI, vol. 19(4), pages 1-19, February.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:4:p:2136-:d:748889
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/4/2136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/4/2136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jian Zhou & Xibing Li & Hani Mitri, 2015. "Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 291-316, October.
    2. Weizhang Liang & Suizhi Luo & Guoyan Zhao & Hao Wu, 2020. "Predicting Hard Rock Pillar Stability Using GBDT, XGBoost, and LightGBM Algorithms," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    3. Ebrahim Ghasemi & Mohammad Ataei & Kourosh Shahriar, 2014. "Prediction of global stability in room and pillar coal mines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 405-422, June.
    4. Jingjing Dai & Pengfei Shan & Qi Zhou, 2020. "Study on Intelligent Identification Method of Coal Pillar Stability in Fully Mechanized Caving Face of Thick Coal Seam," Energies, MDPI, vol. 13(2), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bita Ghasemkhani & Kadriye Filiz Balbal & Derya Birant, 2024. "A New Predictive Method for Classification Tasks in Machine Learning: Multi-Class Multi-Label Logistic Model Tree (MMLMT)," Mathematics, MDPI, vol. 12(18), pages 1-27, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weizhang Liang & Suizhi Luo & Guoyan Zhao & Hao Wu, 2020. "Predicting Hard Rock Pillar Stability Using GBDT, XGBoost, and LightGBM Algorithms," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    2. Zongguo Zhang & Xianyang Qiu & Xiuzhi Shi & Zhi Yu, 2023. "Chamber roof deformation prediction and analysis of underground mining using experimental design methodologies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 757-777, January.
    3. Chao Chen & Jian Zhou & Tao Zhou & Weixun Yong, 2021. "Evaluation of vertical shaft stability in underground mines: comparison of three weight methods with uncertainty theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1457-1479, November.
    4. Hengfeng Liu & Qiang Sun & Nan Zhou & Zhongya Wu, 2021. "Risk Assessment and Control Strategy of Residual Coal Pillar in Room Mining: Case Study in Ecologically Fragile Mining Areas, China," Sustainability, MDPI, vol. 13(5), pages 1-13, March.
    5. Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).
    6. Feng Cui & Shuai Dong & Xingping Lai & Jianqiang Chen & Chong Jia & Tinghui Zhang, 2020. "Study on the Fracture Law of Inclined Hard Roof and Surrounding Rock Control of Mining Roadway in Longwall Mining Face," Energies, MDPI, vol. 13(20), pages 1-22, October.
    7. Leilei Liu & Guoyan Zhao & Weizhang Liang, 2023. "Slope Stability Prediction Using k -NN-Based Optimum-Path Forest Approach," Mathematics, MDPI, vol. 11(14), pages 1-31, July.
    8. Muhammad Ali & Naseer Muhammad Khan & Qiangqiang Gao & Kewang Cao & Danial Jahed Armaghani & Saad S. Alarifi & Hafeezur Rehman & Izhar Mithal Jiskani, 2023. "Prediction of Coal Dilatancy Point Using Acoustic Emission Characteristics: Insight Experimental and Artificial Intelligence Approaches," Mathematics, MDPI, vol. 11(6), pages 1-25, March.
    9. Chongchong Qi & Andy Fourie & Xuhao Du & Xiaolin Tang, 2018. "Prediction of open stope hangingwall stability using random forests," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1179-1197, June.
    10. Babek Erdebilli & Burcu Devrim-İçtenbaş, 2022. "Ensemble Voting Regression Based on Machine Learning for Predicting Medical Waste: A Case from Turkey," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
    11. Ji, Shujuan & Wang, Xin & Lyu, Tao & Liu, Xiaojie & Wang, Yuanqing & Heinen, Eva & Sun, Zhenwei, 2022. "Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: A non-linear and interaction effect analysis," Journal of Transport Geography, Elsevier, vol. 103(C).
    12. Ahmed Salih Mohammed & Panagiotis G. Asteris & Mohammadreza Koopialipoor & Dimitrios E. Alexakis & Minas E. Lemonis & Danial Jahed Armaghani, 2021. "Stacking Ensemble Tree Models to Predict Energy Performance in Residential Buildings," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    13. Yiheng Li & Weidong Chen, 2020. "A Comparative Performance Assessment of Ensemble Learning for Credit Scoring," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    14. Jin, Scarlett T. & Wang, Lei & Sui, Daniel, 2023. "How the built environment affects E-scooter sharing link flows: A machine learning approach," Journal of Transport Geography, Elsevier, vol. 112(C).
    15. Shaohan Zhang & Shucheng Tan & Yongqi Sun & Duanyu Ding & Wei Yang, 2024. "Risk Mapping of Geological Hazards in Plateau Mountainous Areas Based on Multisource Remote Sensing Data Extraction and Machine Learning (Fuyuan, China)," Land, MDPI, vol. 13(9), pages 1-25, August.
    16. Mahmood Ahmad & Suraparb Keawsawasvong & Mohd Rasdan Bin Ibrahim & Muhammad Waseem & Kazem Reza Kashyzadeh & Mohanad Muayad Sabri Sabri, 2022. "Novel Approach to Predicting Soil Permeability Coefficient Using Gaussian Process Regression," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    17. Pengxiang Zhao & Wenjin Zhang & Shugang Li & Zechen Chang & Yajie Lu & Congying Cao & Yu Shi & Yongyong Jia & Fang Lou & Zongyong Wei & Jun Liu, 2022. "Numerical Simulation Study on Mechanical Characteristics and Width Optimization of Narrow Coal Pillar in Gob-Side Coal Seam Tunnel," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    18. Niaz Muhammad Shahani & Xigui Zheng & Xiaowei Guo & Xin Wei, 2022. "Machine Learning-Based Intelligent Prediction of Elastic Modulus of Rocks at Thar Coalfield," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    19. Jin, Tanhua & Cheng, Long & Liu, Zhicheng & Cao, Jun & Huang, Haosheng & Witlox, Frank, 2022. "Nonlinear public transit accessibility effects on housing prices: Heterogeneity across price segments," Transport Policy, Elsevier, vol. 117(C), pages 48-59.
    20. Hengjie Luan & Huili Lin & Yujing Jiang & Yahua Wang & Jiankang Liu & Pu Wang, 2018. "Risks Induced by Room Mining Goaf and Their Assessment: A Case Study in the Shenfu-Dongsheng Mining Area," Sustainability, MDPI, vol. 10(3), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:4:p:2136-:d:748889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.