IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11862-d665756.html
   My bibliography  Save this article

Factors Influencing Pile Friction Bearing Capacity: Proposing a Novel Procedure Based on Gradient Boosted Tree Technique

Author

Listed:
  • Chia Yu Huat

    (Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

  • Seyed Mohammad Hossein Moosavi

    (Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

  • Ahmed Salih Mohammed

    (Civil Engineering Department, College of Engineering, University of Sulaimani, Sulaymaniyah 46001, Iraq)

  • Danial Jahed Armaghani

    (Department of Urban Planning, Engineering Networks and Systems, Institute of Architecture and Construction, South Ural State University, 454080 Chelyabinsk, Russia)

  • Dmitrii Vladimirovich Ulrikh

    (Department of Urban Planning, Engineering Networks and Systems, Institute of Architecture and Construction, South Ural State University, 454080 Chelyabinsk, Russia)

  • Masoud Monjezi

    (Department of Mining, Faculty of Engineering, Tarbiat Modares University, Tehran 14115-143, Iran)

  • Sai Hin Lai

    (Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

Abstract

In geotechnical engineering, there is a need to propose a practical, reliable and accurate way for the estimation of pile bearing capacity. A direct measure of this parameter is difficult and expensive to achieve on-site, and needs a series of machine settings. This study aims to introduce a process for selecting the most important parameters in the area of pile capacity and to propose several tree-based techniques for forecasting the pile bearing capacity, all of which are fully intelligent. In terms of the first objective, pile length, hammer drop height, pile diameter, hammer weight, and N values of the standard penetration test were selected as the most important factors for estimating pile capacity. These were then used as model inputs in different tree-based techniques, i.e., decision tree (DT), random forest (RF), and gradient boosted tree (GBT) in order to predict pile friction bearing capacity. This was implemented with the help of 130 High Strain Dynamic Load tests which were conducted in the Kepong area, Malaysia. The developed tree-based models were assessed using various statistical indices and the best performance with the lowest system error was obtained by the GBT technique. The coefficient of determination (R 2 ) values of 0.901 and 0.816 for the train and test parts of the GBT model, respectively, showed the power and capability of this tree-based model in estimating pile friction bearing capacity. The GBT model and the input selection process proposed in this research can be introduced as a new, powerful, and practical methodology to predict pile capacity in real projects.

Suggested Citation

  • Chia Yu Huat & Seyed Mohammad Hossein Moosavi & Ahmed Salih Mohammed & Danial Jahed Armaghani & Dmitrii Vladimirovich Ulrikh & Masoud Monjezi & Sai Hin Lai, 2021. "Factors Influencing Pile Friction Bearing Capacity: Proposing a Novel Procedure Based on Gradient Boosted Tree Technique," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11862-:d:665756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11862/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed Salih Mohammed & Panagiotis G. Asteris & Mohammadreza Koopialipoor & Dimitrios E. Alexakis & Minas E. Lemonis & Danial Jahed Armaghani, 2021. "Stacking Ensemble Tree Models to Predict Energy Performance in Residential Buildings," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    2. Danial Jahed Armaghani & Panagiotis G. Asteris & Behnam Askarian & Mahdi Hasanipanah & Reza Tarinejad & Van Van Huynh, 2020. "Examining Hybrid and Single SVM Models with Different Kernels to Predict Rock Brittleness," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    3. Aghaabbasi, Mahdi & Shekari, Zohreh Asadi & Shah, Muhammad Zaly & Olakunle, Oloruntobi & Armaghani, Danial Jahed & Moeinaddini, Mehdi, 2020. "Predicting the use frequency of ride-sourcing by off-campus university students through random forest and Bayesian network techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 262-281.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cuiying Zhou & Jinwu Ouyang & Zhen Liu & Lihai Zhang, 2022. "Early Risk Warning of Highway Soft Rock Slope Group Using Fuzzy-Based Machine Learning," Sustainability, MDPI, vol. 14(6), pages 1-28, March.
    2. Xiaohua Ding & Mehdi Jamei & Mahdi Hasanipanah & Rini Asnida Abdullah & Binh Nguyen Le, 2023. "Optimized Data-Driven Models for Prediction of Flyrock due to Blasting in Surface Mines," Sustainability, MDPI, vol. 15(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qun Yu & Masoud Monjezi & Ahmed Salih Mohammed & Hesam Dehghani & Danial Jahed Armaghani & Dmitrii Vladimirovich Ulrikh, 2021. "Optimized Support Vector Machines Combined with Evolutionary Random Forest for Prediction of Back-Break Caused by Blasting Operation," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    2. Zohreh Asadi-Shekari & Ismaïl Saadi & Mario Cools, 2022. "Applying Machine Learning to Explore Feelings about Sharing the Road with Autonomous Vehicles as a Bicyclist or as a Pedestrian," Sustainability, MDPI, vol. 14(3), pages 1-10, February.
    3. Hai-Bang Ly & Tien-Thinh Le & Huong-Lan Thi Vu & Van Quan Tran & Lu Minh Le & Binh Thai Pham, 2020. "Computational Hybrid Machine Learning Based Prediction of Shear Capacity for Steel Fiber Reinforced Concrete Beams," Sustainability, MDPI, vol. 12(7), pages 1-34, March.
    4. Zhi-Hua Xu & Guang-Liang Feng & Qian-Cheng Sun & Guo-Dong Zhang & Yu-Ming He, 2020. "A Modified Model for Predicting the Strength of Drying-Wetting Cycled Sandstone Based on the P-Wave Velocity," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
    5. Asep Yayat Nurhidayat & Hera Widyastuti & Sutikno & Dwi Phalita Upahita, 2023. "Research on Passengers’ Preferences and Impact of High-Speed Rail on Air Transport Demand," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    6. Zhiqiang Xu & Mahdi Aghaabbasi & Mujahid Ali & Elżbieta Macioszek, 2022. "Targeting Sustainable Transportation Development: The Support Vector Machine and the Bayesian Optimization Algorithm for Classifying Household Vehicle Ownership," Sustainability, MDPI, vol. 14(17), pages 1-17, September.
    7. Qinghe Zhao & Zifang Zhang & Yuchen Huang & Junlong Fang, 2022. "TPE-RBF-SVM Model for Soybean Categories Recognition in Selected Hyperspectral Bands Based on Extreme Gradient Boosting Feature Importance Values," Agriculture, MDPI, vol. 12(9), pages 1-16, September.
    8. Lining Liu & Xiaofei Ye & Tao Wang & Xingchen Yan & Jun Chen & Bin Ran, 2022. "Key Factors Analysis of Severity of Automobile to Two-Wheeler Traffic Accidents Based on Bayesian Network," IJERPH, MDPI, vol. 19(10), pages 1-17, May.
    9. Ahmed Salih Mohammed & Panagiotis G. Asteris & Mohammadreza Koopialipoor & Dimitrios E. Alexakis & Minas E. Lemonis & Danial Jahed Armaghani, 2021. "Stacking Ensemble Tree Models to Predict Energy Performance in Residential Buildings," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    10. Panyu Tang & Mahdi Aghaabbasi & Mujahid Ali & Amin Jan & Abdeliazim Mustafa Mohamed & Abdullah Mohamed, 2022. "How Sustainable Is People’s Travel to Reach Public Transit Stations to Go to Work? A Machine Learning Approach to Reveal Complex Relationships," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    11. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    12. Zhang, Xiaojian & Zhao, Xilei, 2022. "Machine learning approach for spatial modeling of ridesourcing demand," Journal of Transport Geography, Elsevier, vol. 100(C).
    13. Lu, Jing & Meng, Yucan & Timmermans, Harry & Zhang, Anming, 2021. "Modeling hesitancy in airport choice: A comparison of discrete choice and machine learning methods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 230-250.
    14. HUO, Zhengqi & YANG, Xiaobao & LIU, Xiaobing & YAN, Xuedong, 2024. "Spatio-temporal analysis on online designated driving based on empirical data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    15. Yuanyuan Shi & Junyu Zhao & Xianchong Song & Zuoyu Qin & Lichao Wu & Huili Wang & Jian Tang, 2021. "Hyperspectral band selection and modeling of soil organic matter content in a forest using the Ranger algorithm," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-15, June.
    16. Hossain, Sanjana & Loa, Patrick & Ong, Felita & Habib, Khandker Nurul, 2022. "The determinants of commute mode usage frequency of post-secondary students in the Greater Toronto and Hamilton Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 164-185.
    17. Wenlong Tao & Mahdi Aghaabbasi & Mujahid Ali & Abdulrazak H. Almaliki & Rosilawati Zainol & Abdulrhman A. Almaliki & Enas E. Hussein, 2022. "An Advanced Machine Learning Approach to Predicting Pedestrian Fatality Caused by Road Crashes: A Step toward Sustainable Pedestrian Safety," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    18. Hu Li & Qianen Xu & Yang Liu, 2021. "Method for Diagnosing the Uneven Settlement of a Rail Transit Tunnel Based on the Spatial Correlation of High-Density Strain Measurement Points," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    19. Lei Yang & Mahdi Aghaabbasi & Mujahid Ali & Amin Jan & Belgacem Bouallegue & Muhammad Faisal Javed & Nermin M. Salem, 2022. "Comparative Analysis of the Optimized KNN, SVM, and Ensemble DT Models Using Bayesian Optimization for Predicting Pedestrian Fatalities: An Advance towards Realizing the Sustainable Safety of Pedestri," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    20. Yan Li & Fathin Nur Syakirah Hishamuddin & Ahmed Salih Mohammed & Danial Jahed Armaghani & Dmitrii Vladimirovich Ulrikh & Ali Dehghanbanadaki & Aydin Azizi, 2021. "The Effects of Rock Index Tests on Prediction of Tensile Strength of Granitic Samples: A Neuro-Fuzzy Intelligent System," Sustainability, MDPI, vol. 13(19), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11862-:d:665756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.