IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i2p686-d310022.html
   My bibliography  Save this article

New Computational Artificial Intelligence Models for Generating Synthetic Formation Bulk Density Logs While Drilling

Author

Listed:
  • Ahmed Gowida

    (College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Salaheldin Elkatatny

    (College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Saad Al-Afnan

    (College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Abdulazeez Abdulraheem

    (College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

Abstract

Synthetic well log generation using artificial intelligence tools is a robust solution for situations in which logging data are not available or are partially lost. Formation bulk density (RHOB) logging data greatly assist in identifying downhole formations. These data are measured in the field while drilling by using a density log tool in the form of either a logging while drilling (LWD) technique or (more often) by wireline logging after the formations are drilled. This is due to operational limitations during the drilling process. Therefore, the objective of this study was to develop a predictive tool for estimating RHOB while drilling using an adaptive network-based fuzzy interference system (ANFIS), functional network (FN), and support vector machine (SVM). The proposed model uses the mechanical drilling constraints as feeding input parameters, and the conventional RHOB log data as an output parameter. These mechanical drilling parameters are usually measured while drilling, and their responses vary with different formations. A dataset of 2400 actual datapoints, obtained from a horizontal well in the Middle East, were used to build the proposed models. The obtained dataset was divided into a 70/30 ratio for model training and testing, respectively. The optimized ANFIS-based model outperformed the FN- and SVM-based models with a correlation coefficient (R) of 0.93, and average absolute percentage error (AAPE) of 0.81% between the predicted and measured RHOB values. These results demonstrate the reliability of the developed ANFIS model for predicting RHOB while drilling, based on the mechanical drilling parameters. Subsequently, the ANFIS-based model was validated using unseen data from another well within the same field. The validation process yielded an AAPE of 0.97% between the predicted and actual RHOB values, which confirmed the robustness of the developed model as an effective predictive tool for RHOB.

Suggested Citation

  • Ahmed Gowida & Salaheldin Elkatatny & Saad Al-Afnan & Abdulazeez Abdulraheem, 2020. "New Computational Artificial Intelligence Models for Generating Synthetic Formation Bulk Density Logs While Drilling," Sustainability, MDPI, vol. 12(2), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:686-:d:310022
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/2/686/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/2/686/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed, Adil & Khalid, Muhammad, 2018. "An intelligent framework for short-term multi-step wind speed forecasting based on Functional Networks," Applied Energy, Elsevier, vol. 225(C), pages 902-911.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danial Jahed Armaghani & Panagiotis G. Asteris & Behnam Askarian & Mahdi Hasanipanah & Reza Tarinejad & Van Van Huynh, 2020. "Examining Hybrid and Single SVM Models with Different Kernels to Predict Rock Brittleness," Sustainability, MDPI, vol. 12(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianzhou Wang & Chunying Wu & Tong Niu, 2019. "A Novel System for Wind Speed Forecasting Based on Multi-Objective Optimization and Echo State Network," Sustainability, MDPI, vol. 11(2), pages 1-34, January.
    2. Jiang, Ping & Yang, Hufang & Heng, Jiani, 2019. "A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting," Applied Energy, Elsevier, vol. 235(C), pages 786-801.
    3. Rita Teixeira & Adelaide Cerveira & Eduardo J. Solteiro Pires & José Baptista, 2024. "Advancing Renewable Energy Forecasting: A Comprehensive Review of Renewable Energy Forecasting Methods," Energies, MDPI, vol. 17(14), pages 1-30, July.
    4. Lu, Peng & Ye, Lin & Pei, Ming & Zhao, Yongning & Dai, Binhua & Li, Zhuo, 2022. "Short-term wind power forecasting based on meteorological feature extraction and optimization strategy," Renewable Energy, Elsevier, vol. 184(C), pages 642-661.
    5. Nathan Oaks Farrar & Mohd Hasan Ali & Dipankar Dasgupta, 2023. "Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, February.
    6. Abrar Mahi-al-rashid & Fahmid Hossain & Adnan Anwar & Sami Azam, 2022. "False Data Injection Attack Detection in Smart Grid Using Energy Consumption Forecasting," Energies, MDPI, vol. 15(13), pages 1-17, July.
    7. Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2020. "Application of functional deep belief network for estimating daily global solar radiation: A case study in China," Energy, Elsevier, vol. 191(C).
    8. Daniel Vassallo & Raghavendra Krishnamurthy & Thomas Sherman & Harindra J. S. Fernando, 2020. "Analysis of Random Forest Modeling Strategies for Multi-Step Wind Speed Forecasting," Energies, MDPI, vol. 13(20), pages 1-19, October.
    9. Qin, Yong & Li, Kun & Liang, Zhanhao & Lee, Brendan & Zhang, Fuyong & Gu, Yongcheng & Zhang, Lei & Wu, Fengzhi & Rodriguez, Dragan, 2019. "Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal," Applied Energy, Elsevier, vol. 236(C), pages 262-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:686-:d:310022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.