IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v115y2023i1d10.1007_s11069-022-05573-8.html
   My bibliography  Save this article

Chamber roof deformation prediction and analysis of underground mining using experimental design methodologies

Author

Listed:
  • Zongguo Zhang

    (Central South University)

  • Xianyang Qiu

    (Central South University)

  • Xiuzhi Shi

    (Central South University)

  • Zhi Yu

    (Central South University)

Abstract

The deformation prediction of the chamber roof is crucial in underground mining. Combined with Flac3D numerical simulation, the experimental design methodologies, including single-factor test (SFT), Plackett–Burman design (PBD), steepest ascent design, and response surface methodology, were used to evaluate the effect of multiple variables on the chamber roof deformation. Firstly, eight factors that affected the vertical displacement (Ds) of the chamber roof were selected, and the sensitive interval of every factor was obtained through SFT. Then, four factors that significantly affect the results were screened by PBD: cohesion (Co), stope length (Ls), stope width (Ws), and internal friction angle (fr). Twenty-nine groups of response surface schemes with 4 factors and 3 levels satisfying the Box–Behnken design (BBD) were simulated. Through the result analysis of variance (ANOVA) and sensitivity, the influence order of each factor on Ds can be determined: Ws >Ls >fr > Co > interaction between Co and fr > interaction between Ls and Ws. Finally, using the prediction model, the roof deformation of 0#N stope of a lead–zinc mine was predicted and the error was analyzed. The relative errors between the prediction value and the numerical simulation value, the measured value are 0.7% and 4.3%, respectively, which indicates that the prediction model is reasonable and has a certain reference value for mine safety.

Suggested Citation

  • Zongguo Zhang & Xianyang Qiu & Xiuzhi Shi & Zhi Yu, 2023. "Chamber roof deformation prediction and analysis of underground mining using experimental design methodologies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 757-777, January.
  • Handle: RePEc:spr:nathaz:v:115:y:2023:i:1:d:10.1007_s11069-022-05573-8
    DOI: 10.1007/s11069-022-05573-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05573-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05573-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jian Zhou & Xibing Li & Hani Mitri, 2015. "Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 291-316, October.
    2. Chongchong Qi & Andy Fourie & Xuhao Du & Xiaolin Tang, 2018. "Prediction of open stope hangingwall stability using random forests," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1179-1197, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Chen & Jian Zhou & Tao Zhou & Weixun Yong, 2021. "Evaluation of vertical shaft stability in underground mines: comparison of three weight methods with uncertainty theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1457-1479, November.
    2. Mohamed Elgharib Gomah & Guichen Li & Naseer Muhammad Khan & Changlun Sun & Jiahui Xu & Ahmed A. Omar & B. G. Mousa & Marzouk Mohamed Aly Abdelhamid & M. M. Zaki, 2022. "Prediction of Strength Parameters of Thermally Treated Egyptian Granodiorite Using Multivariate Statistics and Machine Learning Techniques," Mathematics, MDPI, vol. 10(23), pages 1-21, November.
    3. Muhammad Ali & Naseer Muhammad Khan & Qiangqiang Gao & Kewang Cao & Danial Jahed Armaghani & Saad S. Alarifi & Hafeezur Rehman & Izhar Mithal Jiskani, 2023. "Prediction of Coal Dilatancy Point Using Acoustic Emission Characteristics: Insight Experimental and Artificial Intelligence Approaches," Mathematics, MDPI, vol. 11(6), pages 1-25, March.
    4. Chongchong Qi & Andy Fourie & Xuhao Du & Xiaolin Tang, 2018. "Prediction of open stope hangingwall stability using random forests," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1179-1197, June.
    5. Ahmed Salih Mohammed & Panagiotis G. Asteris & Mohammadreza Koopialipoor & Dimitrios E. Alexakis & Minas E. Lemonis & Danial Jahed Armaghani, 2021. "Stacking Ensemble Tree Models to Predict Energy Performance in Residential Buildings," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    6. Ning Li & Masoud Zare & Congke Yi & Rafael Jimenez, 2022. "Stability Risk Assessment of Underground Rock Pillars Using Logistic Model Trees," IJERPH, MDPI, vol. 19(4), pages 1-19, February.
    7. Jui-Sheng Chou & Dinh-Nhat Truong & Yonatan Che, 2020. "Optimized multi-output machine learning system for engineering informatics in assessing natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 727-754, April.
    8. Chimunhu, Prosper & Topal, Erkan & Ajak, Ajak Duany & Asad, Waqar, 2022. "A review of machine learning applications for underground mine planning and scheduling," Resources Policy, Elsevier, vol. 77(C).
    9. Xiao-yan Huang & Li He & Hua-sheng Zhao & Ying Huang & Yu-shuang Wu, 2021. "Prediction model based on the Laplacian eigenmap method combined with a random forest algorithm for rainstorm satellite images during the first annual rainy season in South China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 331-353, May.
    10. Weijun Liu & Zhixiang Liu & Zida Liu & Shuai Xiong & Shuangxia Zhang, 2023. "Random Forest and Whale Optimization Algorithm to Predict the Invalidation Risk of Backfilling Pipeline," Mathematics, MDPI, vol. 11(7), pages 1-19, March.
    11. Danial Jahed Armaghani & Panagiotis G. Asteris & Behnam Askarian & Mahdi Hasanipanah & Reza Tarinejad & Van Van Huynh, 2020. "Examining Hybrid and Single SVM Models with Different Kernels to Predict Rock Brittleness," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    12. Weizhang Liang & Suizhi Luo & Guoyan Zhao & Hao Wu, 2020. "Predicting Hard Rock Pillar Stability Using GBDT, XGBoost, and LightGBM Algorithms," Mathematics, MDPI, vol. 8(5), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:115:y:2023:i:1:d:10.1007_s11069-022-05573-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.