IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v189y2024ics0191261524001206.html
   My bibliography  Save this article

Network macroscopic fundamental diagram-informed graph learning for traffic state imputation

Author

Listed:
  • Xue, Jiawei
  • Ka, Eunhan
  • Feng, Yiheng
  • Ukkusuri, Satish V.

Abstract

Traffic state imputation refers to the estimation of missing values of traffic variables, such as flow rate and traffic density, using available data. It furnishes comprehensive traffic context for various operation tasks such as vehicle routing, and enables us to augment existing datasets (e.g., PeMS, UTD19, Uber Movement) for diverse theoretical and practical investigations. Despite the superior performance achieved by purely data-driven methods, they are subject to two limitations. One limitation is the absence of a traffic engineering-level interpretation in the model architecture, as it fails to elucidate the methodology behind deriving imputation results from a traffic engineering standpoint. The other limitation is the possibility that imputation results may violate traffic flow theories, thereby yielding unreliable outcomes for transportation engineers. In this study, we introduce NMFD-GNN, a physics-informed machine learning method that fuses the network macroscopic fundamental diagram (NMFD) with the graph neural network (GNN), to perform traffic state imputation. Specifically, we construct the graph learning module that captures the spatio-temporal dependency of traffic congestion. Besides, we develop the physics-informed module based on the λ-trapezoidal MFD, which presents a functional form of NMFD and was formulated by transportation researchers in 2020. The primary contribution of NMFD-GNN lies in being the first physics-informed machine learning model specifically designed for real-world traffic networks with multiple roads, while existing studies have primarily focused on individual road corridors. We evaluate the performance of NMFD-GNN by conducting experiments on real-world traffic networks located in Zurich and London, utilizing the UTD19 dataset 11Codes are available at https://github.com/JiaweiXue/NMFD_GNN.. The results indicate that our NMFD-GNN outperforms six baseline models in terms of performance in traffic state imputation.

Suggested Citation

  • Xue, Jiawei & Ka, Eunhan & Feng, Yiheng & Ukkusuri, Satish V., 2024. "Network macroscopic fundamental diagram-informed graph learning for traffic state imputation," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:transb:v:189:y:2024:i:c:s0191261524001206
    DOI: 10.1016/j.trb.2024.102996
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524001206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.102996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:189:y:2024:i:c:s0191261524001206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.