IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v131y2019icp24-36.html
   My bibliography  Save this article

Discrete-time dynamic road congestion pricing under stochastic user optimal principle

Author

Listed:
  • Han, Linghui
  • Zhu, Chengjuan
  • Wang, David Z.W.
  • Sun, Huijun
  • Tan, Zhijia
  • Meng, Meng

Abstract

Road pricing is believed to be an effective instrument for alleviating roadway congestion. Most existing road pricing schemes are developed based on traditional static traffic equilibrium models, in which a fixed toll can be obtained to support the corresponding traffic flow pattern as an equilibrium. However, static models cannot consider the evolution process of traffic flow caused by the day-to-day fluctuations of road users’ route choices. Under practical traffic conditions, the multiple traffic equilibria may exist (e.g., due to the asymmetric travel cost function). Indeed, the fixed road pricing scheme derived from the equilibrium model cannot guarantee that the dynamic traffic system can converge to the desired equilibrium state from any initial traffic state. This study, assuming that travelers follow the stochastic user optimal principle, develops a day-to-day dynamic road pricing scheme that can drive the traffic dynamic system to converge to a given stochastic user equilibrium (SUE) even when the traffic system has multiple SUE states. The characteristic of this dynamic road pricing scheme is verified by rigorous proof and numerical tests in this study.

Suggested Citation

  • Han, Linghui & Zhu, Chengjuan & Wang, David Z.W. & Sun, Huijun & Tan, Zhijia & Meng, Meng, 2019. "Discrete-time dynamic road congestion pricing under stochastic user optimal principle," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 24-36.
  • Handle: RePEc:eee:transe:v:131:y:2019:i:c:p:24-36
    DOI: 10.1016/j.tre.2019.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554518314649
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2019.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Daqiang & Ignatius, Joshua & Sun, Danzhi & Goh, Mark & Zhan, Shalei, 2018. "Impact of congestion pricing schemes on emissions and temporal shift of freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 77-105.
    2. Han, Linghui & Sun, Huijun & Wu, Jianjun & Zhu, Chengjuan, 2011. "Day-to-day evolution of the traffic network with Advanced Traveler Information System," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 914-919.
    3. Wu, Xin & Nie, Lei & Xu, Meng & Zhao, Lili, 2019. "Distribution planning problem for a high-speed rail catering service considering time-varying demands and pedestrian congestion: A lot-sizing-based model and decomposition algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 61-89.
    4. Friesz, Terry L. & Mookherjee, Reetabrata & Yao, Tao, 2008. "Securitizing congestion: The congestion call option," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 407-437, June.
    5. Yang, Hai & Liu, Wei & Wang, Xiaolei & Zhang, Xiaoning, 2013. "On the morning commute problem with bottleneck congestion and parking space constraints," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 106-118.
    6. F. Stefanello & L. S. Buriol & M. J. Hirsch & P. M. Pardalos & T. Querido & M. G. C. Resende & M. Ritt, 2017. "On the minimization of traffic congestion in road networks with tolls," Annals of Operations Research, Springer, vol. 249(1), pages 119-139, February.
    7. Yang, Hai & Ye, Hongbo, 2016. "Physics of day-to-day network flow dynamicsAuthor-Name: Xiao, Feng," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 86-103.
    8. Han, Linghui & Wang, David Z.W. & Lo, Hong K. & Zhu, Chengjuan & Cai, Xingju, 2017. "Discrete-time day-to-day dynamic congestion pricing scheme considering multiple equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 1-16.
    9. Hu, Lu & Zhu, Juan Xiu & Wang, Yuan & Lee, Loo Hay, 2018. "Joint design of fleet size, hub locations, and hub capacities for third-party logistics networks with road congestion constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 568-588.
    10. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun, 2011. "Improving travel efficiency by parking permits distribution and trading," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1018-1034, August.
    11. Dušan Teodorović & Konstantinos Triantis & Praveen Edara & Yueqin Zhao & Snežana Mladenović, 2008. "Auction-Based Congestion Pricing," Transportation Planning and Technology, Taylor & Francis Journals, vol. 31(4), pages 399-416, March.
    12. Olaf Jahn & Rolf H. Möhring & Andreas S. Schulz & Nicolás E. Stier-Moses, 2005. "System-Optimal Routing of Traffic Flows with User Constraints in Networks with Congestion," Operations Research, INFORMS, vol. 53(4), pages 600-616, August.
    13. Bie, Jing & Lo, Hong K., 2010. "Stability and attraction domains of traffic equilibria in a day-to-day dynamical system formulation," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 90-107, January.
    14. Watling, David, 1999. "Stability of the stochastic equilibrium assignment problem: a dynamical systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 33(4), pages 281-312, May.
    15. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    16. Niu, Baozhuang & Mu, Zihao & Li, Baixun, 2019. "O2O results in traffic congestion reduction and sustainability improvement: Analysis of “Online-to-Store” channel and uniform pricing strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 481-505.
    17. Yang, Hai & Wang, Xiaolei, 2011. "Managing network mobility with tradable credits," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 580-594, March.
    18. Yusen Xia & Jian Yang & Tingting Zhou, 2019. "Revenue management under randomly evolving economic conditions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(1), pages 73-89, February.
    19. Wang, Wei (Walker) & Wang, David Z.W. & Zhang, Fangni & Sun, Huijun & Zhang, Wenyi & Wu, Jianjun, 2017. "Overcoming the Downs-Thomson Paradox by transit subsidy policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 126-147.
    20. Han, Deren & Yang, Hai & Wang, Xiaolei, 2010. "Efficiency of the plate-number-based traffic rationing in general networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1095-1110, November.
    21. Rambha, Tarun & Boyles, Stephen D., 2016. "Dynamic pricing in discrete time stochastic day-to-day route choice models," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 104-118.
    22. Sushil R. Poudel & Md Abdul Quddus & Mohammad Marufuzzaman & Linkan Bian & Reuben F. Burch V, 2019. "Managing congestion in a multi-modal transportation network under biomass supply uncertainty," Annals of Operations Research, Springer, vol. 273(1), pages 739-781, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Zhandong & Chen, Anthony & Li, Guoyuan & Li, Zhengyang & Liu, Xiaobo, 2024. "Elastic-demand bi-criteria traffic assignment under the continuously distributed value of time: A two-stage gradient projection algorithm with graphical interpretations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    2. Hsieh, Hsu-Sheng, 2022. "Road pricing acceptability and persuasive communication effectiveness," Transport Policy, Elsevier, vol. 125(C), pages 179-191.
    3. Chen, Dongxu & Sun, Yu & Yang, Zhongzhen, 2020. "Optimization of the travel ban scheme of cars based on the spatial distribution of the last digit of license plates," Transport Policy, Elsevier, vol. 94(C), pages 43-53.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren-Yong Guo & Hai Yang & Hai-Jun Huang & Zhijia Tan, 2016. "Day-to-Day Flow Dynamics and Congestion Control," Transportation Science, INFORMS, vol. 50(3), pages 982-997, August.
    2. Guo, Ren-Yong & Szeto, W.Y., 2018. "Day-to-day modal choice with a Pareto improvement or zero-sum revenue scheme," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 1-25.
    3. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    4. Ye, Hongbo & Yang, Hai, 2013. "Continuous price and flow dynamics of tradable mobility credits," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 436-450.
    5. Ling-Ling Xiao & Tian-Liang Liu & Hai-Jun Huang, 2021. "Tradable permit schemes for managing morning commute with carpool under parking space constraint," Transportation, Springer, vol. 48(4), pages 1563-1586, August.
    6. Wang, Xiaotian & Wang, Xin, 2019. "Flexible parking reservation system and pricing: A continuum approximation approach," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 408-434.
    7. Nie, Yu (Marco) & Yin, Yafeng, 2013. "Managing rush hour travel choices with tradable credit scheme," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 1-19.
    8. Xiao, Ling-Ling & Liu, Tian-Liang & Huang, Hai-Jun, 2016. "On the morning commute problem with carpooling behavior under parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 383-407.
    9. Liu, Wei & Szeto, Wai Yuen, 2020. "Learning and managing stochastic network traffic dynamics with an aggregate traffic representation," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 19-46.
    10. Liu, Wei & Geroliminis, Nikolas, 2017. "Doubly dynamics for multi-modal networks with park-and-ride and adaptive pricing," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 162-179.
    11. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2014. "Bottleneck model revisited: An activity-based perspective," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 262-287.
    12. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
    13. Qian, Zhen (Sean) & Rajagopal, Ram, 2014. "Optimal occupancy-driven parking pricing under demand uncertainties and traveler heterogeneity: A stochastic control approach," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 144-165.
    14. Zhu, Shanjiang & Du, Longyuan & Zhang, Lei, 2013. "Rationing and pricing strategies for congestion mitigation: Behavioral theory, econometric model, and application in Beijing," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 210-224.
    15. Wei Wu & Wei Liu & Fangni Zhang & Vinayak Dixit, 2021. "A New Flexible Parking Reservation Scheme for the Morning Commute under Limited Parking Supplies," Networks and Spatial Economics, Springer, vol. 21(3), pages 513-545, September.
    16. Tang, Zhe-Yi & Tian, Li-Jun & Wang, David Z.W., 2021. "Multi-modal morning commute with endogenous shared autonomous vehicle penetration considering parking space constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    17. Wada, Kentaro & Akamatsu, Takashi, 2013. "A hybrid implementation mechanism of tradable network permits system which obviates path enumeration: An auction mechanism with day-to-day capacity control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 94-112.
    18. Lu, Xiao-Shan & Guo, Ren-Yong & Huang, Hai-Jun & Xu, Xiaoming & Chen, Jiajia, 2021. "Equilibrium analysis of parking for integrated daily commuting," Research in Transportation Economics, Elsevier, vol. 90(C).
    19. Lahlou, Salem & Wynter, Laura, 2017. "A Nash equilibrium formulation of a tradable credits scheme for incentivizing transport choices: From next-generation public transport mode choice to HOT lanes," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 185-212.
    20. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:131:y:2019:i:c:p:24-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.