IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8298-d425308.html
   My bibliography  Save this article

An Improved Hybrid Highway Traffic Flow Prediction Model Based on Machine Learning

Author

Listed:
  • Zhanzhong Wang

    (Transportation College, Jilin University, Changchun 130022, China)

  • Ruijuan Chu

    (Transportation College, Jilin University, Changchun 130022, China)

  • Minghang Zhang

    (Transportation College, Jilin University, Changchun 130022, China)

  • Xiaochao Wang

    (Transportation College, Jilin University, Changchun 130022, China)

  • Siliang Luan

    (Transportation College, Jilin University, Changchun 130022, China)

Abstract

For intelligent transportation systems (ITSs), reliable and accurate real-time traffic flow prediction is an important step and a necessary prerequisite for alleviating traffic congestion and improving highway operation efficiency. In this paper, we propose an improved hybrid predicting model including two steps: decomposition and prediction to predict highway traffic flow. First, we adopted the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method to adaptively decompose the original nonlinear, nonstationary, and complex highway traffic flow data. Then, we used the improved weighted permutation entropy (IWPE) to obtain new reconstructed components. In the prediction step, we used the gray wolf optimizer (GWO) algorithm to optimize the least-squares support vector machine (LSSVM) prediction model established for each reconstruction component and integrate the prediction results of each subsequence to obtain the final prediction result. We experimentally validated the effectiveness of the proposed approach. The research results reveal that the proposed model is useful for predicting traffic flow and its changing trends and also allowing transportation officials to make more effective traffic decisions.

Suggested Citation

  • Zhanzhong Wang & Ruijuan Chu & Minghang Zhang & Xiaochao Wang & Siliang Luan, 2020. "An Improved Hybrid Highway Traffic Flow Prediction Model Based on Machine Learning," Sustainability, MDPI, vol. 12(20), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8298-:d:425308
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Lingru & Zhang, Zhanchang & Yang, Junjie & Yu, Yidan & Zhou, Teng & Qin, Jing, 2019. "A noise-immune Kalman filter for short-term traffic flow forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    2. Muhammad Tanveer & Faizan Ahmad Kashmiri & Hassan Naeem & Huimin Yan & Xin Qi & Syed Muzammil Abbas Rizvi & Tianshi Wang & Huapu Lu, 2020. "An Assessment of Age and Gender Characteristics of Mixed Traffic with Autonomous and Manual Vehicles: A Cellular Automata Approach," Sustainability, MDPI, vol. 12(7), pages 1-22, April.
    3. Stefano de Luca & Roberta Di Pace & Silvio Memoli & Luigi Pariota, 2020. "Sustainable Traffic Management in an Urban Area: An Integrated Framework for Real-Time Traffic Control and Route Guidance Design," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    4. Aderemi Adewumi & Jimmy Kagamba & Alex Alochukwu, 2016. "Application of Chaos Theory in the Prediction of Motorised Traffic Flows on Urban Networks," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-15, January.
    5. Sajjakaj Jomnonkwao & Savalee Uttra & Vatanavongs Ratanavaraha, 2020. "Forecasting Road Traffic Deaths in Thailand: Applications of Time-Series, Curve Estimation, Multiple Linear Regression, and Path Analysis Models," Sustainability, MDPI, vol. 12(1), pages 1-17, January.
    6. Okutani, Iwao & Stephanedes, Yorgos J., 1984. "Dynamic prediction of traffic volume through Kalman filtering theory," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 1-11, February.
    7. Zhichao Li & Jilin Huang, 2019. "How to Mitigate Traffic Congestion Based on Improved Ant Colony Algorithm: A Case Study of a Congested Old Area of a Metropolis," Sustainability, MDPI, vol. 11(4), pages 1-15, February.
    8. Shuxia Yang & Yu Ji & Di Zhang & Jing Fu, 2019. "Equilibrium between Road Traffic Congestion and Low-Carbon Economy: A Case Study from Beijing, China," Sustainability, MDPI, vol. 11(1), pages 1-22, January.
    9. Han Liu & Jian Wang, 2018. "Vulnerability Assessment for Cascading Failure in the Highway Traffic System," Sustainability, MDPI, vol. 10(7), pages 1-12, July.
    10. Marta Rojo, 2020. "Evaluation of Traffic Assignment Models through Simulation," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shenghan Zhou & Chaofan Wei & Chaofei Song & Yu Fu & Rui Luo & Wenbing Chang & Linchao Yang, 2022. "A Hybrid Deep Learning Model for Short-Term Traffic Flow Pre-Diction Considering Spatiotemporal Features," Sustainability, MDPI, vol. 14(16), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Tao & Zhou, Xuesong & Taylor, Jeffrey, 2013. "Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 66-90.
    2. Di Pace, Roberta & Storani, Facundo & Guarnaccia, Claudio & de Luca, Stefano, 2023. "Signal setting design to reduce noise emissions in a connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
    3. Jiaqi Wu & Wenbo Li & Wenting Xu & Lin Yuan, 2023. "Measuring Resident Participation in the Renewal of Older Residential Communities in China under Policy Change," Sustainability, MDPI, vol. 15(3), pages 1-24, February.
    4. M. Bierlaire & F. Crittin, 2004. "An Efficient Algorithm for Real-Time Estimation and Prediction of Dynamic OD Tables," Operations Research, INFORMS, vol. 52(1), pages 116-127, February.
    5. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
    6. Mariusz Korzeń & Maciej Kruszyna, 2023. "Modified Ant Colony Optimization as a Means for Evaluating the Variants of the City Railway Underground Section," IJERPH, MDPI, vol. 20(6), pages 1-15, March.
    7. Cai, Lingru & Zhang, Zhanchang & Yang, Junjie & Yu, Yidan & Zhou, Teng & Qin, Jing, 2019. "A noise-immune Kalman filter for short-term traffic flow forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    8. Huayuan Chen & Zhizhe Lin & Yamin Yao & Hai Xie & Youyi Song & Teng Zhou, 2024. "Hybrid Extreme Learning for Reliable Short-Term Traffic Flow Forecasting," Mathematics, MDPI, vol. 12(20), pages 1-15, October.
    9. Jiasong Zhu & Anthony Gar-On Yeh, 2012. "A Self-Learning Short-Term Traffic Forecasting System," Environment and Planning B, , vol. 39(3), pages 471-485, June.
    10. Ma, Changxi & Zhang, Bowen & Li, Shukai & Lu, Youpeng, 2024. "Urban rail transit passenger flow prediction with ResCNN-GRU based on self-attention mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    11. Safikhani, Abolfazl & Kamga, Camille & Mudigonda, Sandeep & Faghih, Sabiheh Sadat & Moghimi, Bahman, 2020. "Spatio-temporal modeling of yellow taxi demands in New York City using generalized STAR models," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1138-1148.
    12. Zhang, Jie & Song, Chunyue & Cao, Shan & Zhang, Chun, 2023. "FDST-GCN: A Fundamental Diagram based Spatiotemporal Graph Convolutional Network for expressway traffic forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    13. Balaji Ganesh Rajagopal & Manish Kumar & Pijush Samui & Mosbeh R. Kaloop & Usama Elrawy Shahdah, 2022. "A Hybrid DNN Model for Travel Time Estimation from Spatio-Temporal Features," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    14. Zong, Fang & Li, Yu-Xuan & Zeng, Meng, 2023. "Developing a carbon emission charging scheme considering mobility as a service," Energy, Elsevier, vol. 267(C).
    15. Hongxia Ge & Siteng Li & Rongjun Cheng & Zhenlei Chen, 2022. "Self-Attention ConvLSTM for Spatiotemporal Forecasting of Short-Term Online Car-Hailing Demand," Sustainability, MDPI, vol. 14(12), pages 1-16, June.
    16. Lu, Xijin & Ma, Changxi & Qiao, Yihuan, 2021. "Short-term demand forecasting for online car-hailing using ConvLSTM networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    17. He, Yuxin & Zhao, Yang & Luo, Qin & Tsui, Kwok-Leung, 2022. "Forecasting nationwide passenger flows at city-level via a spatiotemporal deep learning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    18. Juan Francisco Sánchez-Pérez & Santiago Oviedo-Casado & Gonzalo García-Ros & Manuel Conesa & Enrique Castro, 2024. "Understanding Complex Traffic Dynamics with the Nondimensionalisation Technique," Mathematics, MDPI, vol. 12(4), pages 1-14, February.
    19. Fei Wang & Yinxi Liang & Zhizhe Lin & Jinglin Zhou & Teng Zhou, 2024. "SSA-ELM: A Hybrid Learning Model for Short-Term Traffic Flow Forecasting," Mathematics, MDPI, vol. 12(12), pages 1-17, June.
    20. Shenghan Zhou & Chaofan Wei & Chaofei Song & Yu Fu & Rui Luo & Wenbing Chang & Linchao Yang, 2022. "A Hybrid Deep Learning Model for Short-Term Traffic Flow Pre-Diction Considering Spatiotemporal Features," Sustainability, MDPI, vol. 14(16), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8298-:d:425308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.