IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8335-d425743.html
   My bibliography  Save this article

Comparative Study on the Adsorption Capacities of the Three Black Phosphorus-Based Materials for Methylene Blue in Water

Author

Listed:
  • Juanhong Wang

    (School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun 130117, China
    These authors contributed equally to this work.)

  • Zhaocheng Zhang

    (School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun 130117, China
    These authors contributed equally to this work.)

  • Dongyang He

    (School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun 130117, China)

  • Hao Yang

    (School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun 130117, China)

  • Dexin Jin

    (School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun 130117, China)

  • Jiao Qu

    (School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun 130117, China)

  • Yanan Zhang

    (School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun 130117, China)

Abstract

Dye effluent has attracted considerable attention from worldwide researchers due to its harm and toxicity in recent years; as a result, the treatment for dye has become one of the focuses in the environmental field. Adsorption has been widely applied in water treatment owing to its various advantages. However, the adsorption behaviors of the new materials, such as the 2D black phosphorus (BP), for pollution were urgently revealed and improved. In this work, BP, black phosphorene (BPR), and sulfonated BPR (BPRS) were prepared by the vapor phase deposition method, liquid-phase exfoliating method, and modification with sulfonation, respectively. The three BP-based materials were characterized and used as adsorbents for the removal of methylene blue (MB) in water. The results showed that the specific surface areas (SSAs) of BP, BPR, and BPRS were only 6.78, 6.92, and 7.72 m 2 ·g −1 , respectively. However, the maximum adsorption capacities of BP, BPR, and BPRS for MB could reach up to 84.03, 91.74, and 140.85 mg·g −1 , which were higher than other reported materials with large SSAs such as graphene (GP), nanosheet/magnetite, and reduced graphene oxide (rGO). In the process of BP adsorbing MB, wrinkles were generated, and the wrinkles would further induce adsorption. BPR had fewer layers (3–5), more wrinkles, and stronger adsorption capacity (91.74 mg·g −1 ). The interactions between the BP-based materials and MB might cause the BP-based materials to deform, i.e., to form wrinkles, thereby creating new adsorption sites between layers, and then further inducing adsorption. Although the wrinkles had a certain promotion effect, the adsorption capacity was limited, so the sulfonic acid functional group was introduced to modify BPR to increase its adsorption sites and promote the adsorption effect. These findings could provide a new viewpoint and insight on the adsorption behavior and potential application of the BP-based materials.

Suggested Citation

  • Juanhong Wang & Zhaocheng Zhang & Dongyang He & Hao Yang & Dexin Jin & Jiao Qu & Yanan Zhang, 2020. "Comparative Study on the Adsorption Capacities of the Three Black Phosphorus-Based Materials for Methylene Blue in Water," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8335-:d:425743
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8335/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8335/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    2. Fengnian Xia & Han Wang & Yichen Jia, 2014. "Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ewa Okoniewska, 2021. "Removal of Selected Dyes on Activated Carbons," Sustainability, MDPI, vol. 13(8), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    2. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    4. Kaushik, Lav Kumar & Muthukumar, P., 2020. "Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner," Energy, Elsevier, vol. 206(C).
    5. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    6. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    7. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    8. D. M. D. Rasika & Janak K. Vidanarachchi & Selma F. Luiz & Denise Rosane Perdomo Azeredo & Adriano G. Cruz & Chaminda Senaka Ranadheera, 2021. "Probiotic Delivery through Non-Dairy Plant-Based Food Matrices," Agriculture, MDPI, vol. 11(7), pages 1-23, June.
    9. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    10. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    11. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    12. Chamberlin Stéphane Azebaze Mboving & Zbigniew Hanzelka & Andrzej Firlit, 2022. "Analysis of the Factors Having an Influence on the LC Passive Harmonic Filter Work Efficiency," Energies, MDPI, vol. 15(5), pages 1-51, March.
    13. Lu Chen & Qincheng Chen & Pinhua Rao & Lili Yan & Alghashm Shakib & Guoqing Shen, 2018. "Formulating and Optimizing a Novel Biochar-Based Fertilizer for Simultaneous Slow-Release of Nitrogen and Immobilization of Cadmium," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    14. Biranchi Panda & K. Shankhwar & Akhil Garg & M. M. Savalani, 2019. "Evaluation of genetic programming-based models for simulating bead dimensions in wire and arc additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 809-820, February.
    15. Hasheminasab, M. & Kermani, M.J. & Nourazar, S.S. & Khodsiani, M.H., 2020. "A novel experimental based statistical study for water management in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 264(C).
    16. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
    17. Ahmad Abbaszadeh-Mayvan & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Intensification of Continuous Biodiesel Production from Waste Cooking Oils Using Shockwave Power Reactor: Process Evaluation and Optimization through Response Surface Methodology (RSM)," Energies, MDPI, vol. 11(10), pages 1-13, October.
    18. Walid Yeddes & Ines Ouerghemmi & Majdi Hammami & Hamza Gadhoumi & Taycir Grati Affes & Salma Nait Mohamed & Wissem Aidi-Wannes & Dorota Witrowa-Rajchert & Moufida Saidani-Tounsi & Małgorzata Nowacka, 2022. "Optimizing the Method of Rosemary Essential Oils Extraction by Using Response Surface Methodology (RSM)-Characterization and Toxicological Assessment," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    19. Esther Unyime Etim, 2019. "Removal of Methyl Blue Dye from Aqueous Solution by Adsorption unto Ground Nut Waste," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 15(3), pages 11365-11371, March.
    20. de Oliveira, Lucas Guedes & Aquila, Giancarlo & Balestrassi, Pedro Paulo & de Paiva, Anderson Paulo & de Queiroz, Anderson Rodrigo & de Oliveira Pamplona, Edson & Camatta, Ulisses Pessin, 2020. "Evaluating economic feasibility and maximization of social welfare of photovoltaic projects developed for the Brazilian northeastern coast: An attribute agreement analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8335-:d:425743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.