IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i1p354-d304348.html
   My bibliography  Save this article

Spatial and Temporal Variations of Potential Evapotranspiration in the Loess Plateau of China During 1960–2017

Author

Listed:
  • Congjian Sun

    (School of Geographical Science, Shanxi Normal University, Linfen 041000, China)

  • Zhenjing Zheng

    (School of Geographical Science, Shanxi Normal University, Linfen 041000, China)

  • Wei Chen

    (School of Geographical Science, Shanxi Normal University, Linfen 041000, China)

  • Yuyang Wang

    (Institute of Tibetan Plateau Research, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Potential evapotranspiration (ET 0 ) is an integral component of the hydrological cycle and the global energy balance, and its long-term variation is of much concern in climate change studies. The Loess Plateau is an important area of agricultural civilization and water resources research. This study analyzed the spatial and temporal evolution processes and influential parameters of ET 0 at 70 stations in different topographical areas of the Chinese Loess Plateau (CLP). Using the Mann–Kendall trend, Cross wavelet transform, and the ArcGIS platform, the ET 0 of each station was quantified using the Penman–Monteith equation, and the effects of climatic factors on ET 0 were assessed by analyzing the correlation coefficients and contribution rates of the climatic factors. The results showed that: (1) the overall trend of the ET 0 in different terrains of the Loess Plateau is consistent, however, the ET 0 values differ; the hill region (HR) has the highest ET 0 , followed by the valley region (VR), and the mountain region (MR) has the lowest, and ET 0 changes differ between seasons. (2) Spatial distribution characteristics of multiyear mean ET 0 in the study are as follows: the ET 0 values in mountain and hilly areas are decreasing from west to east, and the higher mean annual ET 0 value in the VR is mainly concentrated in the eastern CLP. (3) In the past 58 years, the annual mean and the seasonal ET 0 of the region showed increasing trends, however, differences in different terrains were obvious. (4) ET 0 has significant correlations with El Niño–Southern Oscillation (ENSO), Pacific–North American teleconnection (PNA), and Atlantic Multidecadal Oscillation (AMO). The resonance period of ET 0 and ENSO was 3–6 a, mainly in 1976–1985. The mean coherence phase angle was close to 360°, indicating that ET 0 lags behind PNA by approximately 2–6 a; ET 0 has a very strong positive correlation with AMO. (5) Relative humidity (RH) is the main influencing factor of ET 0 change in the Loess Plateau. Temperature (T) variation has the highest contribution rate (42%) to the regional ET 0 variation in the entire CLP. We should pay more attention to the variation of evaporation under future climate change, especially temperature change.

Suggested Citation

  • Congjian Sun & Zhenjing Zheng & Wei Chen & Yuyang Wang, 2020. "Spatial and Temporal Variations of Potential Evapotranspiration in the Loess Plateau of China During 1960–2017," Sustainability, MDPI, vol. 12(1), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:1:p:354-:d:304348
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/354/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/354/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berti, Antonio & Tardivo, Gianmarco & Chiaudani, Alessandro & Rech, Francesco & Borin, Maurizio, 2014. "Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy," Agricultural Water Management, Elsevier, vol. 140(C), pages 20-25.
    2. N. W. Arnell & J. A. Lowe & A. J. Challinor & T. J. Osborn, 2019. "Global and regional impacts of climate change at different levels of global temperature increase," Climatic Change, Springer, vol. 155(3), pages 377-391, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Congjian Sun & Xiaoming Li & Wenqiang Zhang & Xingong Li, 2020. "Evolution of Ecological Security in the Tableland Region of the Chinese Loess Plateau Using a Remote-Sensing-Based Index," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    2. Li, Bingbing & Yang, Yi & Li, Zhi, 2021. "Combined effects of multiple factors on spatiotemporally varied soil moisture in China’s Loess Plateau," Agricultural Water Management, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hartin, Corinne & Link, Robert & Patel, Pralit & Mundra, Anupriya & Horowitz, Russell & Dorheim, Kalyn & Clarke, Leon, 2021. "Integrated modeling of human-earth system interactions: An application of GCAM-fusion," Energy Economics, Elsevier, vol. 103(C).
    2. Gonçalo C. Rodrigues & Ricardo P. Braga, 2021. "Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine Temperature-Based Methods in a Hot-Summer Mediterranean Climate," Agriculture, MDPI, vol. 11(2), pages 1-13, February.
    3. Anssi Paasi, 2023. "Regional geographies of climate change," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 114(2), pages 71-78, April.
    4. Feng, Yu & Jia, Yue & Cui, Ningbo & Zhao, Lu & Li, Chen & Gong, Daozhi, 2017. "Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China," Agricultural Water Management, Elsevier, vol. 181(C), pages 1-9.
    5. Yuchuan Lai & Matteo Pozzi, 2024. "Sequential learning of climate change via a physical-parameter-based state-space model and Bayesian inference," Climatic Change, Springer, vol. 177(6), pages 1-22, June.
    6. Sajid Khan & Zishan Ahmad Wani & Rameez Ahmad & Kailash S. Gaira & Susheel Verma, 2024. "Time series analysis of climatic variability and trends in Shiwalik to Pir Panjal mountain range in the Indian western Himalaya," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20355-20377, August.
    7. Michael S. O’Donnell & Daniel J. Manier, 2022. "Spatial Estimates of Soil Moisture for Understanding Ecological Potential and Risk: A Case Study for Arid and Semi-Arid Ecosystems," Land, MDPI, vol. 11(10), pages 1-37, October.
    8. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    9. Orkun Davutluoğlu & Abdurrahman Yavuzdeğer & Burak Esenboğa & Özge Demirdelen & Kübra Tümay Ateş & Tuğçe Demirdelen, 2024. "Carbon Emission Analysis and Reporting in Urban Emissions: An Analysis of the Greenhouse Gas Inventories and Climate Action Plans in Sarıçam Municipality," Sustainability, MDPI, vol. 16(10), pages 1-15, May.
    10. Álvaro-Francisco Morote & Jorge Olcina, 2024. "Preventing through Sustainability Education: Training and the Perception of Floods among School Children," Sustainability, MDPI, vol. 16(11), pages 1-15, May.
    11. Boon Teck Tan & Pei Shan Fam & R. B. Radin Firdaus & Mou Leong Tan & Mahinda Senevi Gunaratne, 2021. "Impact of Climate Change on Rice Yield in Malaysia: A Panel Data Analysis," Agriculture, MDPI, vol. 11(6), pages 1-17, June.
    12. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    13. Tolomio, Massimo & Borin, Maurizio, 2019. "Controlled drainage and crop production in a long-term experiment in North-Eastern Italy," Agricultural Water Management, Elsevier, vol. 222(C), pages 21-29.
    14. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    15. Gonçalo C. Rodrigues & Ricardo P. Braga, 2021. "A Simple Procedure to Estimate Reference Evapotranspiration during the Irrigation Season in a Hot-Summer Mediterranean Climate," Sustainability, MDPI, vol. 13(1), pages 1-13, January.
    16. Tolomio, Massimo & Borin, Maurizio, 2018. "Water table management to save water and reduce nutrient losses from agricultural fields: 6 years of experience in North-Eastern Italy," Agricultural Water Management, Elsevier, vol. 201(C), pages 1-10.
    17. Mattar, Mohamed A., 2018. "Using gene expression programming in monthly reference evapotranspiration modeling: A case study in Egypt," Agricultural Water Management, Elsevier, vol. 198(C), pages 28-38.
    18. Swatantra Kumar Dubey & JungJin Kim & Syewoon Hwang & Younggu Her & Hanseok Jeong, 2023. "Variability of Extreme Events in Coastal and Inland Areas of South Korea during 1961–2020," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    19. Jieming Chou & Mingyang Sun & Wenjie Dong & Weixing Zhao & Jiangnan Li & Yuanmeng Li & Jianyin Zhou, 2021. "Assessment and Prediction of Climate Risks in Three Major Urban Agglomerations of Eastern China," Sustainability, MDPI, vol. 13(23), pages 1-21, November.
    20. Hugo Gaspar Hernandez-Palma & Vladimir Sousa Santos & Adalberto Ospino Castro & Angélica Jiménez Coronado & Roberto Morales Espinoza & Jonny Rafael Plazas Alvarado, 2024. "Sustainable Projects Based on the Intersection of Clean Energy with the Health Sector: A Bibliometric Review," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 489-496, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:1:p:354-:d:304348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.