IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v258y2021ics0378377421004571.html
   My bibliography  Save this article

Combined effects of multiple factors on spatiotemporally varied soil moisture in China’s Loess Plateau

Author

Listed:
  • Li, Bingbing
  • Yang, Yi
  • Li, Zhi

Abstract

Identifying the factors controlling spatiotemporally varied soil moisture (SM) is fundamental for water resources management, but the combined effects of multiple factors across multiple timescales have been rarely considered. The objective of this study is to identify the factor(s) individually or simultaneously controlling SM in China’s Loess Plateau, a region with arid climate experiencing substantial vegetation change because of a revegetation project implemented in 1999. With SM product derived from Global Land Evaporation Amsterdam Model Version 3.0a, we investigated large-scale SM dynamics for surface soil (0–10 cm) and root zone (10–250 cm) for 1982–2015, and considered environmental factors at the regional scale (e.g. precipitation PCP, mean temperature TMP, potential evapotranspiration PET, normalized difference vegetation index NDVI, land use types, elevation, slope gradient, clay fraction, and reference bulk density) and at the global scale (e.g. El Niño/Southern Oscillation ENSO, Pacific Decadal Oscillation PDO, North Atlantic Oscillation NAO, and Arctic Oscillation AO). Spatially, the mean SM in both surface and deep layers decreases with a gradient from the southeast to the northwest. Temporally, SM tends to decrease in the southeast while increases in the northwest, implying a pattern of “wet gets drier, dry gets wetter”. Individually, PET and ENSO are the most important regional and global factors controlling SM, respectively. Simultaneously, PET, PCP, and NDVI have combined effects, while the global factors exhibit no combined effects. The regional and global factors both influence SM at a scale of 8–16 months across the whole study period. In addition, the effects of regional factors exhibit at the scale of 32–64 months but tend to disappear after 1999. The global factors have smaller impacts than regional factors, but they tend to indirectly influence SM through perturbing regional climate. The identified factors highlight the complicated changes and controlling factors of SM, which provides important information for land use management and water resources management. The employed methods are effective in identifying the combined effects of multiple factors and can be extrapolated to other regions.

Suggested Citation

  • Li, Bingbing & Yang, Yi & Li, Zhi, 2021. "Combined effects of multiple factors on spatiotemporally varied soil moisture in China’s Loess Plateau," Agricultural Water Management, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421004571
    DOI: 10.1016/j.agwat.2021.107180
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421004571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laibao Liu & Lukas Gudmundsson & Mathias Hauser & Dahe Qin & Shuangcheng Li & Sonia I. Seneviratne, 2020. "Soil moisture dominates dryness stress on ecosystem production globally," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. A. N. Pettitt, 1979. "A Non‐Parametric Approach to the Change‐Point Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 126-135, June.
    3. Huang, Ze & Liu, Yu & Qiu, Kaiyang & López-Vicente, Manuel & Shen, Weibo & Wu, Gao-Lin, 2021. "Soil-water deficit in deep soil layers results from the planted forest in a semi-arid sandy land: Implications for sustainable agroforestry water management," Agricultural Water Management, Elsevier, vol. 254(C).
    4. Myles R. Allen & William J. Ingram, 2002. "Constraints on future changes in climate and the hydrologic cycle," Nature, Nature, vol. 419(6903), pages 224-232, September.
    5. Gabriel Bowen, 2015. "The diversified economics of soil water," Nature, Nature, vol. 525(7567), pages 43-44, September.
    6. Bernardo B. N. Strassburg & Alvaro Iribarrem & Hawthorne L. Beyer & Carlos Leandro Cordeiro & Renato Crouzeilles & Catarina C. Jakovac & André Braga Junqueira & Eduardo Lacerda & Agnieszka E. Latawiec, 2020. "Global priority areas for ecosystem restoration," Nature, Nature, vol. 586(7831), pages 724-729, October.
    7. Congjian Sun & Zhenjing Zheng & Wei Chen & Yuyang Wang, 2020. "Spatial and Temporal Variations of Potential Evapotranspiration in the Loess Plateau of China During 1960–2017," Sustainability, MDPI, vol. 12(1), pages 1-15, January.
    8. Li, Bingbing & Biswas, Asim & Wang, Yunqiang & Li, Zhi, 2021. "Identifying the dominant effects of climate and land use change on soil water balance in deep loessial vadose zone," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Laura E. Condon & Adam L. Atchley & Reed M. Maxwell, 2020. "Evapotranspiration depletes groundwater under warming over the contiguous United States," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prabhavathy Settu & Mangayarkarasi Ramaiah, 2024. "Estimation of Sentinel-1 derived soil moisture using modified Dubois model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 29677-29693, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dayang Wang & Dagang Wang & Chongxun Mo & Yi Du, 2021. "Risk variation of reservoir regulation during flood season based on bivariate statistical approach under climate change: a case study in the Chengbihe reservoir, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1585-1608, September.
    2. Ning Chen & Yifei Zhang & Fenghui Yuan & Changchun Song & Mingjie Xu & Qingwei Wang & Guangyou Hao & Tao Bao & Yunjiang Zuo & Jianzhao Liu & Tao Zhang & Yanyu Song & Li Sun & Yuedong Guo & Hao Zhang &, 2023. "Warming-induced vapor pressure deficit suppression of vegetation growth diminished in northern peatlands," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Stephen J. Déry & Marco A. Hernández-Henríquez & Tricia A. Stadnyk & Tara J. Troy, 2021. "Vanishing weekly hydropeaking cycles in American and Canadian rivers," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Xueke Li & Amanda H. Lynch, 2023. "New insights into projected Arctic sea road: operational risks, economic values, and policy implications," Climatic Change, Springer, vol. 176(4), pages 1-16, April.
    5. Sakineh Khansalari & Atefeh Mohammadi, 2024. "Probabilistic projection of extreme precipitation changes over Iran by the CMIP6 multi-model ensemble," Climatic Change, Springer, vol. 177(7), pages 1-26, July.
    6. Baoni Li & Lihua Xiong & Quan Zhang & Shilei Chen & Han Yang & Shuhui Guo, 2022. "Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 577-613, August.
    7. Festo Richard Silungwe & Frieder Graef & Sonoko Dorothea Bellingrath-Kimura & Emmanuel A Chilagane & Siza Donald Tumbo & Fredrick Cassian Kahimba & Marcos Alberto Lana, 2019. "Modelling Rainfed Pearl Millet Yield Sensitivity to Abiotic Stresses in Semi-Arid Central Tanzania, Eastern Africa," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    8. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    9. Jie Yang & Yimin Wang & Jun Yao & Jianxia Chang & Guoxin Xu & Xin Wang & Hui Hu, 2020. "Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1711-1726, September.
    10. Alina Bărbulescu & Cristian Ștefan Dumitriu, 2021. "On the Connection between the GEP Performances and the Time Series Properties," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    11. Alfredas Račkauskas & Martin Wendler, 2020. "Convergence of U-processes in Hölder spaces with application to robust detection of a changed segment," Statistical Papers, Springer, vol. 61(4), pages 1409-1435, August.
    12. Hsin-Yu Chen & Yu-Hsiang Hsu & Chia-Chi Huang & Hsin-Fu Yeh, 2023. "Baseflow Variation in Southern Taiwan Basin," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    13. Zhang, Qingsong & Sun, Jiahao & Dai, Changlei & Zhang, Guangxin & Wu, Yanfeng, 2024. "Sustainable development of groundwater resources under the large-scale conversion of dry land into rice fields," Agricultural Water Management, Elsevier, vol. 298(C).
    14. Catherine Araujo Bonjean & Alioune N’diaye & Olivier Santoni, 2019. "Who benefits from the return of the rains? The case of the Ferlo breeders in Senegal [A qui profite le retour des pluies ? Le cas des éleveurs du Ferlo]," CERDI Working papers halshs-02419601, HAL.
    15. Peng Jiang & Zhongbo Yu & Mahesh R. Gautam & Kumud Acharya, 2016. "The Spatiotemporal Characteristics of Extreme Precipitation Events in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4807-4821, October.
    16. Christoph Schär & Nikolina Ban & Erich M. Fischer & Jan Rajczak & Jürg Schmidli & Christoph Frei & Filippo Giorgi & Thomas R. Karl & Elizabeth J. Kendon & Albert M. G. Klein Tank & Paul A. O’Gorman & , 2016. "Percentile indices for assessing changes in heavy precipitation events," Climatic Change, Springer, vol. 137(1), pages 201-216, July.
    17. Xuezhi Tan & Xinxin Wu & Zeqin Huang & Jianyu Fu & Xuejin Tan & Simin Deng & Yaxin Liu & Thian Yew Gan & Bingjun Liu, 2023. "Increasing global precipitation whiplash due to anthropogenic greenhouse gas emissions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Wei Wei & Jiping Wang & Libang Ma & Xufeng Wang & Binbin Xie & Junju Zhou & Haoyan Zhang, 2024. "Global Drought-Wetness Conditions Monitoring Based on Multi-Source Remote Sensing Data," Land, MDPI, vol. 13(1), pages 1-19, January.
    19. Zheng Fu & Philippe Ciais & I. Colin Prentice & Pierre Gentine & David Makowski & Ana Bastos & Xiangzhong Luo & Julia K. Green & Paul C. Stoy & Hui Yang & Tomohiro Hajima, 2022. "Atmospheric dryness reduces photosynthesis along a large range of soil water deficits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Shakil Ahmad Romshoo & Jasia Bashir & Irfan Rashid, 2020. "Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models," Climatic Change, Springer, vol. 162(3), pages 1473-1491, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421004571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.